論文の概要: Retinexmamba: Retinex-based Mamba for Low-light Image Enhancement
- arxiv url: http://arxiv.org/abs/2405.03349v1
- Date: Mon, 6 May 2024 10:59:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 14:06:06.121194
- Title: Retinexmamba: Retinex-based Mamba for Low-light Image Enhancement
- Title(参考訳): Retinexmamba:低照度画像強調のためのRetinex-based Mamba
- Authors: Jiesong Bai, Yuhao Yin, Qiyuan He,
- Abstract要約: RetinexMambaは従来のRetinexメソッドの物理的直感性を捉え、Retinexformerのディープラーニングフレームワークを統合する。
このアーキテクチャは、イノベーティブな照明推定器と、エンハンスメント中の画質を維持する損傷回復機構を備えている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of low-light image enhancement, both traditional Retinex methods and advanced deep learning techniques such as Retinexformer have shown distinct advantages and limitations. Traditional Retinex methods, designed to mimic the human eye's perception of brightness and color, decompose images into illumination and reflection components but struggle with noise management and detail preservation under low light conditions. Retinexformer enhances illumination estimation through traditional self-attention mechanisms, but faces challenges with insufficient interpretability and suboptimal enhancement effects. To overcome these limitations, this paper introduces the RetinexMamba architecture. RetinexMamba not only captures the physical intuitiveness of traditional Retinex methods but also integrates the deep learning framework of Retinexformer, leveraging the computational efficiency of State Space Models (SSMs) to enhance processing speed. This architecture features innovative illumination estimators and damage restorer mechanisms that maintain image quality during enhancement. Moreover, RetinexMamba replaces the IG-MSA (Illumination-Guided Multi-Head Attention) in Retinexformer with a Fused-Attention mechanism, improving the model's interpretability. Experimental evaluations on the LOL dataset show that RetinexMamba outperforms existing deep learning approaches based on Retinex theory in both quantitative and qualitative metrics, confirming its effectiveness and superiority in enhancing low-light images.
- Abstract(参考訳): 低照度画像強調の分野では、従来のRetinex法とRetinexformerのような高度なディープラーニング技術の両方が、明確な利点と限界を示している。
従来のレチネックス法は、人間の目の明度と色彩の知覚を模倣するために設計され、画像を照明と反射成分に分解するが、低照度条件下でのノイズ管理と詳細な保存に苦労する。
Retinexformerは、従来の自己認識機構を通じて照明推定を強化するが、解釈容易性や準最適強調効果が不十分な課題に直面している。
これらの制約を克服するために,RetinexMambaアーキテクチャを提案する。
RetinexMambaは従来のRetinexメソッドの物理的直感性を捉えるだけでなく、Retinexformerのディープラーニングフレームワークを統合し、ステートスペースモデル(SSM)の計算効率を活用して処理速度を向上させる。
このアーキテクチャは、イノベーティブな照明推定器と、エンハンスメント中の画質を維持する損傷回復機構を備えている。
さらに、RetinexMambaはRetinexformerのIG-MSA(Illumination-Guided Multi-Head Attention)をFused-Attentionメカニズムで置き換え、モデルの解釈性を向上させる。
LOLデータセットの実験的評価により、RetinexMambaは、Retinex理論に基づく既存のディープラーニングアプローチを定量的および定性的メトリクスの両方で上回り、低照度画像の強化におけるその有効性と優位性を確認した。
関連論文リスト
- ECMamba: Consolidating Selective State Space Model with Retinex Guidance for Efficient Multiple Exposure Correction [48.77198487543991]
本稿では,反射率と照明マップの復元を目的とした,二重経路を持つ露出補正のためのMamba(ECMamba)に基づく新しいフレームワークを提案する。
具体的には、Retinex理論を導出し、入力を2つの中間空間にマッピングできるRetinex推定器を訓練する。
我々は、ECMMのコア演算子として、Retinex情報(Retinex-SS2D)で案内される新しい2次元選択状態空間層を開発する。
論文 参考訳(メタデータ) (2024-10-28T21:02:46Z) - Semi-LLIE: Semi-supervised Contrastive Learning with Mamba-based Low-light Image Enhancement [59.17372460692809]
本研究は、平均教師による半教師付き低照度強化(Semi-LLIE)フレームワークを提案する。
照度分布を忠実に伝達するために、意味認識によるコントラスト損失を導入し、自然色による画像の強調に寄与する。
また,大規模な視覚言語認識モデル(RAM)に基づく新たな知覚損失を提案し,よりリッチなテキストによる画像生成を支援する。
論文 参考訳(メタデータ) (2024-09-25T04:05:32Z) - DARK: Denoising, Amplification, Restoration Kit [0.7670170505111058]
本稿では,低照度条件下での画像強調のための軽量な計算フレームワークを提案する。
我々のモデルは軽量に設計されており、標準のコンシューマハードウェア上でのリアルタイムアプリケーションに対する低計算需要と適合性を保証する。
論文 参考訳(メタデータ) (2024-05-21T16:01:13Z) - DI-Retinex: Digital-Imaging Retinex Theory for Low-Light Image Enhancement [73.57965762285075]
本稿では,デジタル画像におけるRetinex理論の理論的および実験的解析を通じて,Digital-Imaging Retinex theory(DI-Retinex)という新しい表現を提案する。
提案手法は, 視覚的品質, モデルサイズ, 速度の観点から, 既存の教師なし手法よりも優れていた。
論文 参考訳(メタデータ) (2024-04-04T09:53:00Z) - Reti-Diff: Illumination Degradation Image Restoration with Retinex-based
Latent Diffusion Model [59.08821399652483]
照明劣化画像復元(IDIR)技術は、劣化した画像の視認性を改善し、劣化した照明の悪影響を軽減することを目的としている。
これらのアルゴリズムのうち、拡散モデル(DM)に基づく手法は期待できる性能を示しているが、画像レベルの分布を予測する際に、重い計算要求や画素の不一致の問題に悩まされることが多い。
我々は、コンパクトな潜在空間内でDMを活用して、簡潔な指導先を生成することを提案し、IDIRタスクのためのReti-Diffと呼ばれる新しいソリューションを提案する。
Reti-Diff は Retinex-based Latent DM (RLDM) と Retinex-Guided Transformer (RG) の2つの鍵成分からなる。
論文 参考訳(メタデータ) (2023-11-20T09:55:06Z) - TensoIR: Tensorial Inverse Rendering [51.57268311847087]
テンソルIRはテンソル分解とニューラルフィールドに基づく新しい逆レンダリング手法である。
TensoRFは、放射場モデリングのための最先端のアプローチである。
論文 参考訳(メタデータ) (2023-04-24T21:39:13Z) - Retinexformer: One-stage Retinex-based Transformer for Low-light Image
Enhancement [96.09255345336639]
低照度画像の高精細化のために,原理化された1段Retinex-based Framework (ORF) を定式化する。
ORFはまず照明情報を推定し、低照度画像を照らす。
我々のアルゴリズムであるRetinexformerは13のベンチマークで最先端の手法を大幅に上回っている。
論文 参考訳(メタデータ) (2023-03-12T16:54:08Z) - Retinex Image Enhancement Based on Sequential Decomposition With a
Plug-and-Play Framework [16.579397398441102]
画像強調とノイズ除去を同時に行うために,Retinex理論に基づくプラグイン・アンド・プレイ・フレームワークを設計する。
我々のフレームワークは、画像の強調とデノーミングの両面で最先端の手法に勝っている。
論文 参考訳(メタデータ) (2022-10-11T13:29:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。