Retinexmamba: Retinex-based Mamba for Low-light Image Enhancement
- URL: http://arxiv.org/abs/2405.03349v2
- Date: Mon, 20 May 2024 02:37:16 GMT
- Title: Retinexmamba: Retinex-based Mamba for Low-light Image Enhancement
- Authors: Jiesong Bai, Yuhao Yin, Qiyuan He, Yuanxian Li, Xiaofeng Zhang,
- Abstract summary: RetinexMamba captures the physical intuitiveness of traditional Retinex methods and integrates the deep learning framework of Retinexformer.
This architecture features innovative illumination estimators and damage restorer mechanisms that maintain image quality during enhancement.
- Score: 4.88806532092118
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of low-light image enhancement, both traditional Retinex methods and advanced deep learning techniques such as Retinexformer have shown distinct advantages and limitations. Traditional Retinex methods, designed to mimic the human eye's perception of brightness and color, decompose images into illumination and reflection components but struggle with noise management and detail preservation under low light conditions. Retinexformer enhances illumination estimation through traditional self-attention mechanisms, but faces challenges with insufficient interpretability and suboptimal enhancement effects. To overcome these limitations, this paper introduces the RetinexMamba architecture. RetinexMamba not only captures the physical intuitiveness of traditional Retinex methods but also integrates the deep learning framework of Retinexformer, leveraging the computational efficiency of State Space Models (SSMs) to enhance processing speed. This architecture features innovative illumination estimators and damage restorer mechanisms that maintain image quality during enhancement. Moreover, RetinexMamba replaces the IG-MSA (Illumination-Guided Multi-Head Attention) in Retinexformer with a Fused-Attention mechanism, improving the model's interpretability. Experimental evaluations on the LOL dataset show that RetinexMamba outperforms existing deep learning approaches based on Retinex theory in both quantitative and qualitative metrics, confirming its effectiveness and superiority in enhancing low-light images.
Related papers
- ECMamba: Consolidating Selective State Space Model with Retinex Guidance for Efficient Multiple Exposure Correction [48.77198487543991]
We introduce a novel framework based on Mamba for Exposure Correction (ECMamba) with dual pathways, each dedicated to the restoration of reflectance and illumination map.
Specifically, we derive the Retinex theory and we train a Retinex estimator capable of mapping inputs into two intermediary spaces.
We develop a novel 2D Selective State-space layer guided by Retinex information (Retinex-SS2D) as the core operator of ECMM.
arXiv Detail & Related papers (2024-10-28T21:02:46Z) - Semi-LLIE: Semi-supervised Contrastive Learning with Mamba-based Low-light Image Enhancement [59.17372460692809]
This work proposes a mean-teacher-based semi-supervised low-light enhancement (Semi-LLIE) framework that integrates the unpaired data into model training.
We introduce a semantic-aware contrastive loss to faithfully transfer the illumination distribution, contributing to enhancing images with natural colors.
We also propose novel perceptive loss based on the large-scale vision-language Recognize Anything Model (RAM) to help generate enhanced images with richer textual details.
arXiv Detail & Related papers (2024-09-25T04:05:32Z) - DARK: Denoising, Amplification, Restoration Kit [0.7670170505111058]
This paper introduces a novel lightweight computational framework for enhancing images under low-light conditions.
Our model is designed to be lightweight, ensuring low computational demand and suitability for real-time applications on standard consumer hardware.
arXiv Detail & Related papers (2024-05-21T16:01:13Z) - DI-Retinex: Digital-Imaging Retinex Theory for Low-Light Image Enhancement [73.57965762285075]
We propose a new expression called Digital-Imaging Retinex theory (DI-Retinex) through theoretical and experimental analysis of Retinex theory in digital imaging.
Our proposed method outperforms all existing unsupervised methods in terms of visual quality, model size, and speed.
arXiv Detail & Related papers (2024-04-04T09:53:00Z) - Reti-Diff: Illumination Degradation Image Restoration with Retinex-based
Latent Diffusion Model [59.08821399652483]
Illumination degradation image restoration (IDIR) techniques aim to improve the visibility of degraded images and mitigate the adverse effects of deteriorated illumination.
Among these algorithms, diffusion model (DM)-based methods have shown promising performance but are often burdened by heavy computational demands and pixel misalignment issues when predicting the image-level distribution.
We propose to leverage DM within a compact latent space to generate concise guidance priors and introduce a novel solution called Reti-Diff for the IDIR task.
Reti-Diff comprises two key components: the Retinex-based latent DM (RLDM) and the Retinex-guided transformer (RG
arXiv Detail & Related papers (2023-11-20T09:55:06Z) - TensoIR: Tensorial Inverse Rendering [51.57268311847087]
TensoIR is a novel inverse rendering approach based on tensor factorization and neural fields.
TensoRF is a state-of-the-art approach for radiance field modeling.
arXiv Detail & Related papers (2023-04-24T21:39:13Z) - Retinexformer: One-stage Retinex-based Transformer for Low-light Image
Enhancement [96.09255345336639]
We formulate a principled One-stage Retinex-based Framework (ORF) to enhance low-light images.
ORF first estimates the illumination information to light up the low-light image and then restores the corruption to produce the enhanced image.
Our algorithm, Retinexformer, significantly outperforms state-of-the-art methods on thirteen benchmarks.
arXiv Detail & Related papers (2023-03-12T16:54:08Z) - Retinex Image Enhancement Based on Sequential Decomposition With a
Plug-and-Play Framework [16.579397398441102]
We design a plug-and-play framework based on the Retinex theory for simultaneously image enhancement and noise removal.
Our framework outcompetes the state-of-the-art methods in both image enhancement and denoising.
arXiv Detail & Related papers (2022-10-11T13:29:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.