論文の概要: Automated Computation of Therapies Using Failure Mode and Effects Analysis in the Medical Domain
- arxiv url: http://arxiv.org/abs/2405.03406v1
- Date: Mon, 6 May 2024 12:16:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 13:46:36.270264
- Title: Automated Computation of Therapies Using Failure Mode and Effects Analysis in the Medical Domain
- Title(参考訳): 医療領域における障害モードと効果分析を用いた治療自動計算
- Authors: Malte Luttermann, Edgar Baake, Juljan Bouchagiar, Benjamin Gebel, Philipp Grüning, Dilini Manikwadura, Franziska Schollemann, Elisa Teifke, Philipp Rostalski, Ralf Möller,
- Abstract要約: 障害モードと影響分析(FMEA)は、システムやプロセスにおける潜在的な障害とその影響を特定するための体系的なアプローチである。
FMEAモデルにおける自動計画と行動を可能にするための正式なフレームワークを提供する。
FMEAアプローチは, モデル作成過程において, 医療専門家を支援するだけでなく, 患者に対する最適な治療法を自動導出するためにも有効であることを示す。
- 参考スコア(独自算出の注目度): 2.870251260169012
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Failure mode and effects analysis (FMEA) is a systematic approach to identify and analyse potential failures and their effects in a system or process. The FMEA approach, however, requires domain experts to manually analyse the FMEA model to derive risk-reducing actions that should be applied. In this paper, we provide a formal framework to allow for automatic planning and acting in FMEA models. More specifically, we cast the FMEA model into a Markov decision process which can then be solved by existing solvers. We show that the FMEA approach can not only be used to support medical experts during the modelling process but also to automatically derive optimal therapies for the treatment of patients.
- Abstract(参考訳): フェールモードとエフェクト分析(FMEA)は、システムやプロセスにおける潜在的な障害とその影響を特定し、分析するための体系的なアプローチである。
しかし、FMEAアプローチでは、ドメインの専門家がFMEAモデルを手動で分析し、適用すべきリスク低減アクションを導出する必要がある。
本稿では、FMEAモデルにおける自動計画と動作を可能にするための正式なフレームワークを提供する。
具体的には、FMEAモデルをマルコフ決定プロセスに投入し、既存の問題解決者によって解決することができる。
FMEAアプローチは, モデル作成過程において, 医療専門家を支援するだけでなく, 患者に対する最適な治療法を自動導出するためにも有効であることを示す。
関連論文リスト
- Data-Driven Simulator for Mechanical Circulatory Support with Domain Adversarial Neural Process [15.562905335917408]
MCSの既存の機械シミュレータは仮定の単純化に依存しており、患者固有の振る舞いには敏感である。
ニューラルプロセスアーキテクチャを用いて, MCSポンプレベルと不確実性を伴う大動脈圧測定の確率的関係を捉える。
非定常的傾向予測では19%改善した経験的結果から,DANPが臨床医の有効なツールとして確立された。
論文 参考訳(メタデータ) (2024-05-28T19:07:12Z) - Unified Uncertainty Estimation for Cognitive Diagnosis Models [70.46998436898205]
本稿では,幅広い認知診断モデルに対する統一的不確実性推定手法を提案する。
診断パラメータの不確かさをデータ・アスペクトとモデル・アスペクトに分解する。
本手法は有効であり,認知診断の不確実性に関する有用な知見を提供することができる。
論文 参考訳(メタデータ) (2024-03-09T13:48:20Z) - Variational Inference of Parameters in Opinion Dynamics Models [9.51311391391997]
この研究は、変数推論を用いて、意見力学 ABM のパラメータを推定する。
我々は推論プロセスを自動微分に適した最適化問題に変換する。
提案手法は, シミュレーションベース法とMCMC法より, マクロ的(有界信頼区間とバックファイア閾値)と微視的(200ドル, エージェントレベルの役割)の両方を正確に推定する。
論文 参考訳(メタデータ) (2024-03-08T14:45:18Z) - Progress and Opportunities of Foundation Models in Bioinformatics [77.74411726471439]
基礎モデル(FM)は、特に深層学習の領域において、計算生物学の新しい時代に定着した。
我々の焦点は、特定の生物学的問題にFMを応用することであり、研究ニーズに適切なFMを選択するために研究コミュニティを指導することを目的としています。
データノイズ、モデル説明可能性、潜在的なバイアスなど、生物学においてFMが直面する課題と限界を分析します。
論文 参考訳(メタデータ) (2024-02-06T02:29:17Z) - Decision-Dependent Distributionally Robust Markov Decision Process
Method in Dynamic Epidemic Control [4.644416582073023]
Susceptible-Exposed-Infectious-Recovered (SEIR) モデルは感染症の拡散を表すために広く用いられている。
本稿では,動的流行制御問題に対処するために,分布ロバストマルコフ決定プロセス(DRMDP)を提案する。
論文 参考訳(メタデータ) (2023-06-24T20:19:04Z) - Assisting clinical practice with fuzzy probabilistic decision trees [2.0999441362198907]
本研究では,確率木とファジィ論理を組み合わせて臨床実習を支援する新しい手法であるFPTを提案する。
FPTとその予測は、この目的のために特別に設計されたユーザフレンドリーなインターフェースを用いて、直感的に臨床実践を支援することができることを示す。
論文 参考訳(メタデータ) (2023-04-16T14:05:16Z) - MUC-driven Feature Importance Measurement and Adversarial Analysis for
Random Forest [1.5896078006029473]
我々は形式的手法と論理的推論を活用して、ランダムフォレスト(RF)の予測を説明する新しいモデル固有の方法を開発した。
提案手法は, 最小不飽和コア(MUC)を中心に, 特徴重要度, 局所的・グローバル的側面, および対向的サンプル分析に関する包括的ソリューションを提供する。
提案手法はユーザ中心のレポートを作成でき,リアルタイムアプリケーションにレコメンデーションを提供するのに役立つ。
論文 参考訳(メタデータ) (2022-02-25T06:15:47Z) - Integrating Expert ODEs into Neural ODEs: Pharmacology and Disease
Progression [71.7560927415706]
潜在ハイブリッドモデル(LHM)は、専門家が設計したODEのシステムと機械学習したNeural ODEを統合し、システムのダイナミクスを完全に記述する。
新型コロナウイルス患者のLHMと実世界の集中治療データについて検討した。
論文 参考訳(メタデータ) (2021-06-05T11:42:45Z) - Leveraging Expert Consistency to Improve Algorithmic Decision Support [62.61153549123407]
建設のギャップを狭めるために観測結果と組み合わせることができる情報源として,歴史専門家による意思決定の利用について検討する。
本研究では,データ内の各ケースが1人の専門家によって評価された場合に,専門家の一貫性を間接的に推定する影響関数に基づく手法を提案する。
本研究は, 児童福祉領域における臨床現場でのシミュレーションと実世界データを用いて, 提案手法が構成ギャップを狭めることに成功していることを示す。
論文 参考訳(メタデータ) (2021-01-24T05:40:29Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
ドメイン適応を容易にするデータ拡張手法を提案する。
逆生成したサンプルはドメイン適応時に使用される。
その結果,本手法の有効性とタスクの一般性が確認された。
論文 参考訳(メタデータ) (2021-01-13T03:20:20Z) - Privacy-preserving medical image analysis [53.4844489668116]
医用画像におけるプライバシ保護機械学習(PPML)のためのソフトウェアフレームワークであるPriMIAを提案する。
集合型学習モデルの分類性能は,未発見データセットの人間専門家と比較して有意に良好である。
グラデーションベースのモデル反転攻撃に対するフレームワークのセキュリティを実証的に評価する。
論文 参考訳(メタデータ) (2020-12-10T13:56:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。