論文の概要: From Mystery to Mastery: Failure Diagnosis for Improving Manipulation Policies
- arxiv url: http://arxiv.org/abs/2412.02818v2
- Date: Sat, 08 Feb 2025 21:54:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:23:59.518455
- Title: From Mystery to Mastery: Failure Diagnosis for Improving Manipulation Policies
- Title(参考訳): ミステリーから熟達へ:マニピュレーションポリシー改善のための故障診断
- Authors: Som Sagar, Jiafei Duan, Sreevishakh Vasudevan, Yifan Zhou, Heni Ben Amor, Dieter Fox, Ransalu Senanayake,
- Abstract要約: 本稿では,臨界故障モード(FM)を自動的に識別するシステムであるロボットマニピュレーション診断(RoboMD)を提案する。
事前訓練された操作ポリシーにおける潜在的なFMの膨大な空間を考慮すると、深層強化学習(deep reinforcement learning, ディープRL)を活用してこれらのFMを探索し、発見する。
非構造環境における未知障害の診断におけるRoboMDの有効性を実証する。
- 参考スコア(独自算出の注目度): 35.18739716338974
- License:
- Abstract: Robot manipulation policies often fail for unknown reasons, posing significant challenges for real-world deployment. Researchers and engineers typically address these failures using heuristic approaches, which are not only labor-intensive and costly but also prone to overlooking critical failure modes (FMs). This paper introduces Robot Manipulation Diagnosis (RoboMD), a systematic framework designed to automatically identify FMs arising from unanticipated changes in the environment. Considering the vast space of potential FMs in a pre-trained manipulation policy, we leverage deep reinforcement learning (deep RL) to explore and uncover these FMs using a specially trained vision-language embedding that encodes a notion of failures. This approach enables users to probabilistically quantify and rank failures in previously unseen environmental conditions. Through extensive experiments across various manipulation tasks and algorithms, we demonstrate RoboMD's effectiveness in diagnosing unknown failures in unstructured environments, providing a systematic pathway to improve the robustness of manipulation policies.
- Abstract(参考訳): ロボット操作ポリシーは、しばしば未知の理由で失敗し、現実世界のデプロイメントにおいて重大な課題を提起する。
研究者やエンジニアは通常、労働集約的でコストがかかるだけでなく、重大な障害モード(FM)を見落としてしまうようなヒューリスティックなアプローチを使ってこれらの障害に対処する。
本稿では,ロボットマニピュレーション診断(RoboMD)について紹介する。
事前訓練された操作ポリシーにおける潜在的なFMの膨大な空間を考えると、我々は深層強化学習(ディープRL)を活用して、障害の概念を符号化した特別に訓練された視覚言語埋め込みを用いてこれらのFMを探索し、発見する。
このアプローチにより、従来見られなかった環境条件下での障害の確率論的定量化とランク付けが可能になる。
様々な操作タスクやアルゴリズムの広範な実験を通じて、未構造化環境における未知の障害の診断におけるRoboMDの有効性を実証し、操作ポリシーの堅牢性を改善するための体系的な経路を提供する。
関連論文リスト
- MILE: Model-based Intervention Learning [0.0]
ごく少数の専門家の介入で政策を学ぶことが可能であることを示す。
私たちの重要な洞察は、専門家のフィードバックから、現在の状態の品質と選択されたアクションの最適性について重要な情報を得ることができます。
論文 参考訳(メタデータ) (2025-02-19T08:15:16Z) - Leveraging Auxiliary Task Relevance for Enhanced Bearing Fault Diagnosis through Curriculum Meta-learning [2.625384087360766]
本稿では,RT-ACM強化故障診断フレームワークを提案する。
RT-ACMは補助センサ作業条件の関連性を考慮して訓練を改善する。
このアプローチは、メタラーナーが優れた収束状態を達成するのに役立つ。
論文 参考訳(メタデータ) (2024-10-27T06:32:41Z) - EnvBridge: Bridging Diverse Environments with Cross-Environment Knowledge Transfer for Embodied AI [7.040779338576156]
大規模言語モデル(LLM)は、ロボットのためのテキスト計画や制御コードを生成することができる。
これらの手法は、異なる環境にまたがる柔軟性と適用性の観点からも、依然として課題に直面している。
本稿では,ロボット操作エージェントの適応性と堅牢性を高めるために,EnvBridgeを提案する。
論文 参考訳(メタデータ) (2024-10-22T11:52:22Z) - No Regrets: Investigating and Improving Regret Approximations for Curriculum Discovery [53.08822154199948]
非教師なし環境設計(UED)手法は、エージェントがイン・オブ・アウト・ディストリビューションタスクに対して堅牢になることを約束する適応的カリキュラムとして近年注目を集めている。
本研究は,既存のUEDメソッドがいかにトレーニング環境を選択するかを検討する。
本研究では,学習性の高いシナリオを直接訓練する手法を開発した。
論文 参考訳(メタデータ) (2024-08-27T14:31:54Z) - Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
ゲームエンジンとDeep Reinforcement Learningの統合の最近の進歩を利用して,水上ナビゲーションのための新しいベンチマーク環境を提案する。
具体的には、最も広く受け入れられているアルゴリズムの一つであるPPOに着目し、先進的なトレーニング手法を提案する。
実験により,これらの成分をうまく組み合わせることで,有望な結果が得られることが示された。
論文 参考訳(メタデータ) (2024-05-30T23:20:23Z) - Adaptable Recovery Behaviors in Robotics: A Behavior Trees and Motion Generators(BTMG) Approach for Failure Management [0.0]
本稿では,リカバリ動作を適応可能なロボット技術としてモデル化し,行動木と動作生成器(BTMG)フレームワークをポリシー表現に活用する手法を提案する。
我々は,ペグ・イン・ア・ホール作業における一連の段階的なシナリオを通じて方法論を評価し,ロボットの協調作業における作業効率の向上とタスク成功率の向上に対するアプローチの有効性を実証した。
論文 参考訳(メタデータ) (2024-04-09T08:56:43Z) - Constrained Reinforcement Learning for Robotics via Scenario-Based
Programming [64.07167316957533]
DRLをベースとしたエージェントの性能を最適化し,その動作を保証することが重要である。
本稿では,ドメイン知識を制約付きDRLトレーニングループに組み込む新しい手法を提案する。
我々の実験は、専門家の知識を活用するために我々のアプローチを用いることで、エージェントの安全性と性能が劇的に向上することを示した。
論文 参考訳(メタデータ) (2022-06-20T07:19:38Z) - Learning Robust Policy against Disturbance in Transition Dynamics via
State-Conservative Policy Optimization [63.75188254377202]
深層強化学習アルゴリズムは、ソースとターゲット環境の相違により、現実世界のタスクでは不十分な処理を行うことができる。
本研究では,前もって乱れをモデル化せずにロバストなポリシーを学習するための,モデルフリーなアクター批判アルゴリズムを提案する。
いくつかのロボット制御タスクの実験では、SCPOは遷移力学の乱れに対する堅牢なポリシーを学習している。
論文 参考訳(メタデータ) (2021-12-20T13:13:05Z) - Error-Aware Policy Learning: Zero-Shot Generalization in Partially
Observable Dynamic Environments [18.8481771211768]
新しい環境に適応できる政策を開発することで、このようなシム・トゥ・リアル問題に取り組むための新しいアプローチを紹介します。
私たちのアプローチの鍵は、トレーニング中に観察できない要因の影響を明示的に認識するエラー認識ポリシー(EAP)です。
ヒップトルク補助装置の訓練されたEAPは, 生体力学的特性の異なる異なる人体エージェントに転送可能であることを示す。
論文 参考訳(メタデータ) (2021-03-13T15:36:44Z) - Guided Uncertainty-Aware Policy Optimization: Combining Learning and
Model-Based Strategies for Sample-Efficient Policy Learning [75.56839075060819]
従来のロボットのアプローチは、環境の正確なモデル、タスクの実行方法の詳細な説明、現在の状態を追跡するための堅牢な認識システムに依存している。
強化学習アプローチは、タスクを記述するための報酬信号だけで、生の感覚入力から直接操作することができるが、非常にサンプル非効率で脆弱である。
本研究では,ロボットの知覚・運動パイプラインにおける不正確さを克服できる一般的な手法を得るために,モデルに基づく手法の強みと学習に基づく手法の柔軟性を組み合わせる。
論文 参考訳(メタデータ) (2020-05-21T19:47:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。