論文の概要: ReCycle: Fast and Efficient Long Time Series Forecasting with Residual Cyclic Transformers
- arxiv url: http://arxiv.org/abs/2405.03429v1
- Date: Mon, 6 May 2024 12:48:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 13:46:36.243948
- Title: ReCycle: Fast and Efficient Long Time Series Forecasting with Residual Cyclic Transformers
- Title(参考訳): ReCycle:Residual Cyclic Transformerを用いた高速かつ効率的な時系列予測
- Authors: Arvid Weyrauch, Thomas Steens, Oskar Taubert, Benedikt Hanke, Aslan Eqbal, Ewa Götz, Achim Streit, Markus Götz, Charlotte Debus,
- Abstract要約: ReCycleと呼ばれるResidual Cyclic Transformerは、ハイメソッドの複雑さとリアルな計算リソースのギャップを埋める。
提案手法は,低性能,低消費電力,エッジコンピューティングデバイス上でのトレーニングと推論を両立させることにより,実行時間とエネルギー消費を1桁以上削減する。
- 参考スコア(独自算出の注目度): 0.06965384453064827
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transformers have recently gained prominence in long time series forecasting by elevating accuracies in a variety of use cases. Regrettably, in the race for better predictive performance the overhead of model architectures has grown onerous, leading to models with computational demand infeasible for most practical applications. To bridge the gap between high method complexity and realistic computational resources, we introduce the Residual Cyclic Transformer, ReCycle. ReCycle utilizes primary cycle compression to address the computational complexity of the attention mechanism in long time series. By learning residuals from refined smoothing average techniques, ReCycle surpasses state-of-the-art accuracy in a variety of application use cases. The reliable and explainable fallback behavior ensured by simple, yet robust, smoothing average techniques additionally lowers the barrier for user acceptance. At the same time, our approach reduces the run time and energy consumption by more than an order of magnitude, making both training and inference feasible on low-performance, low-power and edge computing devices. Code is available at https://github.com/Helmholtz-AI-Energy/ReCycle
- Abstract(参考訳): トランスフォーマーは、近年、様々なユースケースでアキュラシーを上昇させることで、時系列の予測において注目されている。
予測性能の向上競争において、モデルアーキテクチャのオーバーヘッドは増大し、ほとんどの実用的なアプリケーションでは計算要求のモデルが実現不可能となった。
そこで我々はResidual Cyclic Transformer(ReCycle)を導入する。
ReCycleは、一次サイクル圧縮を利用して、長期連続における注意機構の計算複雑性に対処する。
ReCycleは、洗練されたスムーズな平均技術から残余を学習することで、さまざまなアプリケーションユースケースにおける最先端の精度を上回ります。
シンプルで堅牢でスムーズな平均的なテクニックによって保証される信頼性と説明可能なフォールバック行動は、ユーザ受け入れの障壁を下げます。
同時に、我々の手法は、低性能、低消費電力、エッジコンピューティングデバイス上でのトレーニングと推論の両方を可能にするため、実行時間とエネルギー消費を桁違いに削減する。
コードはhttps://github.com/Helmholtz-AI-Energy/ReCycleで入手できる。
関連論文リスト
- Accelerating Error Correction Code Transformers [56.75773430667148]
本稿では,トランスを用いたデコーダの高速化手法を提案する。
最新のハードウェアでは、90%の圧縮比を実現し、算術演算エネルギー消費を少なくとも224倍削減する。
論文 参考訳(メタデータ) (2024-10-08T11:07:55Z) - PRformer: Pyramidal Recurrent Transformer for Multivariate Time Series Forecasting [82.03373838627606]
Transformerアーキテクチャにおける自己保持機構は、時系列予測において時間順序を符号化するために位置埋め込みを必要とする。
この位置埋め込みへの依存は、トランスフォーマーの時間的シーケンスを効果的に表現する能力を制限している、と我々は主張する。
本稿では,Prepreを標準的なTransformerエンコーダと統合し,様々な実世界のデータセット上での最先端性能を示す。
論文 参考訳(メタデータ) (2024-08-20T01:56:07Z) - Sparser is Faster and Less is More: Efficient Sparse Attention for Long-Range Transformers [58.5711048151424]
SPARSEK Attention(SPARSEK Attention)は、計算およびメモリ障害を克服するために設計された、新しいスパースアテンション機構である。
提案手法では,各クエリに対して一定数のKVペアを選択するために,スコアリングネットワークと差別化可能なトップkマスク演算子であるSPARSEKを統合する。
実験結果から,SPARSEK注意は従来のスパースアテンション法よりも優れていた。
論文 参考訳(メタデータ) (2024-06-24T15:55:59Z) - Rough Transformers: Lightweight Continuous-Time Sequence Modelling with Path Signatures [46.58170057001437]
本稿では,入力シーケンスの連続時間表現で動作するトランスフォーマーモデルのバリエーションであるRough Transformerを紹介する。
様々な時系列関連タスクにおいて、Rough Transformersはベニラアテンションよりも常に優れています。
論文 参考訳(メタデータ) (2024-05-31T14:00:44Z) - Rough Transformers for Continuous and Efficient Time-Series Modelling [46.58170057001437]
実世界の医療環境における時系列データは、典型的には長距離依存を示し、一様でない間隔で観察される。
本稿では,入力シーケンスの連続時間表現で動作するトランスフォーマーモデルのバリエーションであるRough Transformerを紹介する。
Rough Transformersは、Neural ODEベースのモデルの利点を得ながら、バニラアテンションを一貫して上回ります。
論文 参考訳(メタデータ) (2024-03-15T13:29:45Z) - Robust representations of oil wells' intervals via sparse attention
mechanism [2.604557228169423]
正規化変換器(Reguformers)と呼ばれる効率的な変換器のクラスを導入する。
私たちの実験の焦点は、石油とガスのデータ、すなわちウェルログにあります。
このような問題に対する我々のモデルを評価するために、20以上の井戸からなるウェルログからなる産業規模のオープンデータセットで作業する。
論文 参考訳(メタデータ) (2022-12-29T09:56:33Z) - Loop Unrolled Shallow Equilibrium Regularizer (LUSER) -- A
Memory-Efficient Inverse Problem Solver [26.87738024952936]
逆問題では、潜在的に破損し、しばしば不適切な測定結果から、いくつかの基本的な関心のシグナルを再構築することを目的としている。
浅い平衡正規化器(L)を用いたLUアルゴリズムを提案する。
これらの暗黙のモデルは、より深い畳み込みネットワークと同じくらい表現力があるが、トレーニング中にはるかにメモリ効率が良い。
論文 参考訳(メタデータ) (2022-10-10T19:50:37Z) - TCCT: Tightly-Coupled Convolutional Transformer on Time Series
Forecasting [6.393659160890665]
本稿では, 密結合型畳み込み変換器(TCCT)と3つのTCCTアーキテクチャを提案する。
実世界のデータセットに対する我々の実験は、我々のTCCTアーキテクチャが既存の最先端トランスフォーマーモデルの性能を大幅に改善できることを示している。
論文 参考訳(メタデータ) (2021-08-29T08:49:31Z) - Layer Pruning on Demand with Intermediate CTC [50.509073206630994]
我々はコネクショニスト時間分類(CTC)に基づくASRの訓練と刈り取り方法を提案する。
本稿では,Transformer-CTCモデルをオンデマンドで様々な深さでプルーニングできることを示し,GPU上でのリアルタイム係数を0.005から0.002に改善した。
論文 参考訳(メタデータ) (2021-06-17T02:40:18Z) - Phase Retrieval using Expectation Consistent Signal Recovery Algorithm
based on Hypernetwork [73.94896986868146]
位相検索は現代の計算イメージングシステムにおいて重要な要素である。
近年のディープラーニングの進歩は、堅牢で高速なPRの新たな可能性を開いた。
我々は、既存の制限を克服するために、深層展開のための新しいフレームワークを開発する。
論文 参考訳(メタデータ) (2021-01-12T08:36:23Z) - Age-Based Coded Computation for Bias Reduction in Distributed Learning [57.9123881133818]
コード計算は、分散学習の高速化に使用することができる。
勾配ベクトルの部分回復は、各反復時の計算時間をさらに短縮することができる。
重なり合う行動が時間とともに相関すると、推定バイアスが特に顕著になる。
論文 参考訳(メタデータ) (2020-06-02T17:51:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。