論文の概要: Neuromorphic Principles for Efficient Large Language Models on Intel Loihi 2
- arxiv url: http://arxiv.org/abs/2503.18002v2
- Date: Tue, 25 Mar 2025 12:05:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-26 16:53:05.506347
- Title: Neuromorphic Principles for Efficient Large Language Models on Intel Loihi 2
- Title(参考訳): Intel Loihi 2上での高能率大言語モデルのニューロモルフィック原理
- Authors: Steven Abreu, Sumit Bam Shrestha, Rui-Jie Zhu, Jason Eshraghian,
- Abstract要約: 大きな言語モデル(LLM)は優れたパフォーマンスを提供するが、大量のエネルギーを必要とする。
We present a MatMul-free LLM architecture with Intel's neuromorphic processor, Loihi 2。
当社のアプローチでは,ローヒ2の低精度,イベント駆動型計算,ステートフル処理のサポートを活用している。
- 参考スコア(独自算出の注目度): 5.213433310722838
- License:
- Abstract: Large language models (LLMs) deliver impressive performance but require large amounts of energy. In this work, we present a MatMul-free LLM architecture adapted for Intel's neuromorphic processor, Loihi 2. Our approach leverages Loihi 2's support for low-precision, event-driven computation and stateful processing. Our hardware-aware quantized model on GPU demonstrates that a 370M parameter MatMul-free model can be quantized with no accuracy loss. Based on preliminary results, we report up to 3x higher throughput with 2x less energy, compared to transformer-based LLMs on an edge GPU, with significantly better scaling. Further hardware optimizations will increase throughput and decrease energy consumption. These results show the potential of neuromorphic hardware for efficient inference and pave the way for efficient reasoning models capable of generating complex, long-form text rapidly and cost-effectively.
- Abstract(参考訳): 大きな言語モデル(LLM)は優れたパフォーマンスを提供するが、大量のエネルギーを必要とする。
本稿では,Intel のニューロモーフィックプロセッサ Loihi 2 に適応した MatMul フリー LLM アーキテクチャを提案する。
当社のアプローチでは,ローヒ2の低精度,イベント駆動型計算,ステートフル処理のサポートを活用している。
ハードウェア対応のGPU量子化モデルでは、370MパラメータのMatMulフリーモデルを精度損失なく定量化できることが示されている。
予備結果に基づいて、エッジGPU上のトランスフォーマーベースのLCMと比較して、最大3倍のスループットで2倍のエネルギーを消費し、スケーリングが大幅に向上した。
さらなるハードウェア最適化によりスループットが向上し、エネルギー消費が減少する。
これらの結果は, 効率的な推論のためのニューロモルフィックハードウェアの可能性を示し, 複雑な長文を高速かつ低コストに生成できる効率的な推論モデルを構築する方法を示している。
関連論文リスト
- MoE-Lightning: High-Throughput MoE Inference on Memory-constrained GPUs [55.95879347182669]
MoEアーキテクチャは、推論コストの比例的な増加なしにモデルキャパシティを向上できることで有名である。
MoE-LightningはCPU-GPU-I/OパイプラインスケジュールであるCGOPipeを導入し、ページ重み付けにより高いリソース利用を実現する。
MoE-Lightningは、単一のT4 GPU(16GB)上でMixtral 8x7Bの最先端オフロード可能なLLM推論システムよりも最大10.3倍高いスループットを実現することができる
論文 参考訳(メタデータ) (2024-11-18T01:06:12Z) - Scalable MatMul-free Language Modeling [8.672867887354977]
MatMul操作は大規模言語モデルから完全に除去可能であることを示す。
提案するMatMulフリーモデルは,最先端のトランスフォーマーと同等の性能を実現する。
論文 参考訳(メタデータ) (2024-06-04T17:50:34Z) - Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment [56.44025052765861]
大規模言語モデル(LLM)は自然言語処理(NLP)に革命をもたらしたが、そのサイズは計算のボトルネックを生み出している。
そこで本研究では,高性能LLMの高精度かつ疎結合な基本バージョンを作成するための新しいアプローチを提案する。
スパース量子化LLaMAの最大8.6倍のCPU上での総高速化を示す。
論文 参考訳(メタデータ) (2024-05-06T16:03:32Z) - FFSplit: Split Feed-Forward Network For Optimizing Accuracy-Efficiency
Trade-off in Language Model Inference [57.119047493787185]
本稿では、異なるハードウェア上で、モデルサイズを43.1%削減し、1.25sim1.56times$wall clock time speedupを無視できる精度低下で実現する方法を示す。
実際、本手法では、異なるハードウェア上で、モデルサイズを43.1%削減し、1.25sim1.56Times$wall clock time speedupを無視できる精度で実現している。
論文 参考訳(メタデータ) (2024-01-08T17:29:16Z) - Efficient LLM Inference on CPUs [8.802223672775844]
大規模言語モデル(LLM)は、幅広いタスクにおいて、顕著なパフォーマンスと大きなポテンシャルを示してきた。
これらのモデルのデプロイは、天文学的なモデルパラメータの量のために困難でした。
LLMのデプロイをより効率的にするための効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2023-11-01T13:08:50Z) - FineQuant: Unlocking Efficiency with Fine-Grained Weight-Only
Quantization for LLMs [9.072821427818557]
大規模言語モデル(LLM)は、様々な言語タスクで最先端のパフォーマンスを達成しているが、実用的なデプロイメントには課題がある。
メモリ消費を削減し,LLMの推論を高速化する,効率的な重みのみの量子化法を提案する。
我々は,OPT-175Bや内部MoEモデルのような大規模オープンソースモデルに対するアプローチを評価し,スループットを最大3.65倍に向上しながら,最小限の精度の損失を示す。
論文 参考訳(メタデータ) (2023-08-16T23:57:41Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
LLMにおける生成推論の主なボトルネックは、単一のバッチ推論のための計算ではなく、メモリ帯域幅である。
学習後量子化フレームワークであるSqueezeLLMを導入し、最大3ビットの超低精度でのロスレス圧縮を実現する。
本フレームワークは,2次情報に基づく最適ビット精度割当を探索する感度ベース非一様量子化法と,2次情報に基づくDense-and-Sparse分解法と,2次情報量割当値と感度重み値を効率的にスパース形式で格納するDense-and-Sparse分解法である。
論文 参考訳(メタデータ) (2023-06-13T08:57:54Z) - AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration [54.692405042065815]
LLM低ビット量のみの量子化のためのハードウェアフレンドリーなアプローチであるActivation-Aware Weight Quantization (AWQ)を提案する。
AWQ は 1% の正重みしか保護せず,命令調整型 LM とマルチモーダル LM の量子化性能に優れる。
また,4ビットオンデバイスLLM/VLMに適した,効率的なフレキシブルな推論フレームワークであるTinyChatを実装した。
論文 参考訳(メタデータ) (2023-06-01T17:59:10Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
トランスフォーマーベースの事前学習言語モデルは、パラメータ容量が大きいため、ほとんどのNLPタスクにおいて優れた性能を実現することができるが、計算コストも大きい。
スパースアクティベーション現象に基づく条件計算により,大規模モデル推論を高速化する。
そこで本研究では,モデルサイズが等しいMoE(Mix-of-experts)バージョン,すなわちMoEficationに変換することを提案する。
論文 参考訳(メタデータ) (2021-10-05T02:14:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。