Field-of-View Extension for Brain Diffusion MRI via Deep Generative Models
- URL: http://arxiv.org/abs/2405.03652v2
- Date: Wed, 28 Aug 2024 20:29:12 GMT
- Title: Field-of-View Extension for Brain Diffusion MRI via Deep Generative Models
- Authors: Chenyu Gao, Shunxing Bao, Michael Kim, Nancy Newlin, Praitayini Kanakaraj, Tianyuan Yao, Gaurav Rudravaram, Yuankai Huo, Daniel Moyer, Kurt Schilling, Walter Kukull, Arthur Toga, Derek Archer, Timothy Hohman, Bennett Landman, Zhiyuan Li,
- Abstract summary: This work aims to develop a method for imputing the missing slices directly from existing dMRI scans with an incomplete field-of-view.
We propose a framework based on a deep generative model that estimates the absent brain regions in dMRI scans with incomplete FOV.
Our approach achieved more accurate whole-brain tractography results with extended and complete FOV and reduced the uncertainty when analyzing bundles associated with Alzheimer's Disease.
- Score: 8.077960607188261
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Purpose: In diffusion MRI (dMRI), the volumetric and bundle analyses of whole-brain tissue microstructure and connectivity can be severely impeded by an incomplete field-of-view (FOV). This work aims to develop a method for imputing the missing slices directly from existing dMRI scans with an incomplete FOV. We hypothesize that the imputed image with complete FOV can improve the whole-brain tractography for corrupted data with incomplete FOV. Therefore, our approach provides a desirable alternative to discarding the valuable dMRI data, enabling subsequent tractography analyses that would otherwise be challenging or unattainable with corrupted data. Approach: We propose a framework based on a deep generative model that estimates the absent brain regions in dMRI scans with incomplete FOV. The model is capable of learning both the diffusion characteristics in diffusion-weighted images (DWI) and the anatomical features evident in the corresponding structural images for efficiently imputing missing slices of DWI outside of incomplete FOV. Results: For evaluating the imputed slices, on the WRAP dataset the proposed framework achieved PSNRb0=22.397, SSIMb0=0.905, PSNRb1300=22.479, SSIMb1300=0.893; on the NACC dataset it achieved PSNRb0=21.304, SSIMb0=0.892, PSNRb1300=21.599, SSIMb1300= 0.877. The proposed framework improved the tractography accuracy, as demonstrated by an increased average Dice score for 72 tracts (p < 0.001) on both the WRAP and NACC datasets. Conclusions: Results suggest that the proposed framework achieved sufficient imputation performance in dMRI data with incomplete FOV for improving whole-brain tractography, thereby repairing the corrupted data. Our approach achieved more accurate whole-brain tractography results with extended and complete FOV and reduced the uncertainty when analyzing bundles associated with Alzheimer's Disease.
Related papers
- ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning [51.26601171361753]
We propose ContextMRI, a text-conditioned diffusion model for MRI that integrates granular metadata into the reconstruction process.
We show that increasing the fidelity of metadata, ranging from slice location and contrast to patient age, sex, and pathology, systematically boosts reconstruction performance.
arXiv Detail & Related papers (2025-01-08T05:15:43Z) - Multi-Modality Conditioned Variational U-Net for Field-of-View Extension in Brain Diffusion MRI [10.096809077954095]
An incomplete field-of-view (FOV) in diffusion magnetic resonance imaging (dMRI) can severely hinder the volumetric and bundle analyses of whole-brain white matter connectivity.
We propose a novel framework for imputing dMRI scans in the incomplete part of the FOV by integrating the learned diffusion features in the acquired part of the FOV to the complete brain anatomical structure.
arXiv Detail & Related papers (2024-09-20T18:41:29Z) - DDEvENet: Evidence-based Ensemble Learning for Uncertainty-aware Brain Parcellation Using Diffusion MRI [5.757390718589337]
EVENet is an Evidence-based Ensemble Neural Network for anatomical brain parcellation using diffusion MRI.
We obtained accurate parcellation and uncertainty estimates across different datasets from healthy and clinical populations.
Thanks to the uncertainty estimation, our EVENet approach demonstrates a good ability to detect abnormal brain regions in patients with lesions.
arXiv Detail & Related papers (2024-09-11T05:26:23Z) - A Demographic-Conditioned Variational Autoencoder for fMRI Distribution Sampling and Removal of Confounds [49.34500499203579]
We create a variational autoencoder (VAE)-based model, DemoVAE, to decorrelate fMRI features from demographics.
We generate high-quality synthetic fMRI data based on user-supplied demographics.
arXiv Detail & Related papers (2024-05-13T17:49:20Z) - Anatomically Constrained Tractography of the Fetal Brain [6.112565873653592]
We advocate for anatomically constrained tractography based on an accurate segmentation of the fetal brain tissue directly in the dMRI space.
Experiments on independent test data show that this method can accurately segment the fetal brain tissue and drastically improve tractography results.
arXiv Detail & Related papers (2024-03-04T19:56:19Z) - Guided Reconstruction with Conditioned Diffusion Models for Unsupervised Anomaly Detection in Brain MRIs [35.46541584018842]
Unsupervised Anomaly Detection (UAD) aims to identify any anomaly as an outlier from a healthy training distribution.
generative models are used to learn the reconstruction of healthy brain anatomy for a given input image.
We propose conditioning the denoising process of diffusion models with additional information derived from a latent representation of the input image.
arXiv Detail & Related papers (2023-12-07T11:03:42Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Building Brains: Subvolume Recombination for Data Augmentation in Large
Vessel Occlusion Detection [56.67577446132946]
A large training data set is required for a standard deep learning-based model to learn this strategy from data.
We propose an augmentation method that generates artificial training samples by recombining vessel tree segmentations of the hemispheres from different patients.
In line with the augmentation scheme, we use a 3D-DenseNet fed with task-specific input, fostering a side-by-side comparison between the hemispheres.
arXiv Detail & Related papers (2022-05-05T10:31:57Z) - 3-Dimensional Deep Learning with Spatial Erasing for Unsupervised
Anomaly Segmentation in Brain MRI [55.97060983868787]
We investigate whether using increased spatial context by using MRI volumes combined with spatial erasing leads to improved unsupervised anomaly segmentation performance.
We compare 2D variational autoencoder (VAE) to their 3D counterpart, propose 3D input erasing, and systemically study the impact of the data set size on the performance.
Our best performing 3D VAE with input erasing leads to an average DICE score of 31.40% compared to 25.76% for the 2D VAE.
arXiv Detail & Related papers (2021-09-14T09:17:27Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z) - Handling Missing MRI Input Data in Deep Learning Segmentation of Brain
Metastases: A Multi-Center Study [1.4463443378902883]
A deep learning based segmentation model for automatic segmentation of brain metastases, named DropOut, was trained on multi-sequence MRI.
The segmentation results were compared with the performance of a state-of-the-art DeepLabV3 model.
The DropOut model showed a significantly higher score compared to the DeepLabV3 model.
arXiv Detail & Related papers (2019-12-27T02:49:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.