論文の概要: MemoryMamba: Memory-Augmented State Space Model for Defect Recognition
- arxiv url: http://arxiv.org/abs/2405.03673v1
- Date: Mon, 6 May 2024 17:49:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 12:57:40.725587
- Title: MemoryMamba: Memory-Augmented State Space Model for Defect Recognition
- Title(参考訳): MemoryMamba: 欠陥認識のためのメモリ拡張状態空間モデル
- Authors: Qianning Wang, He Hu, Yucheng Zhou,
- Abstract要約: 既存の欠陥認識手法の視覚モデルは、現代の製造環境における欠陥の複雑さやバリエーションを扱うには不十分である。
本稿では,新しいメモリ拡張状態空間モデル(SSM)であるMemoryMambaを紹介する。
MemoryMambaは、ステートスペースモデルとメモリ拡張メカニズムを統合することで、システムはトレーニングにおいて不可欠な欠陥固有の情報を維持および取得することができる。
- 参考スコア(独自算出の注目度): 9.275151912667686
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As automation advances in manufacturing, the demand for precise and sophisticated defect detection technologies grows. Existing vision models for defect recognition methods are insufficient for handling the complexities and variations of defects in contemporary manufacturing settings. These models especially struggle in scenarios involving limited or imbalanced defect data. In this work, we introduce MemoryMamba, a novel memory-augmented state space model (SSM), designed to overcome the limitations of existing defect recognition models. MemoryMamba integrates the state space model with the memory augmentation mechanism, enabling the system to maintain and retrieve essential defect-specific information in training. Its architecture is designed to capture dependencies and intricate defect characteristics, which are crucial for effective defect detection. In the experiments, MemoryMamba was evaluated across four industrial datasets with diverse defect types and complexities. The model consistently outperformed other methods, demonstrating its capability to adapt to various defect recognition scenarios.
- Abstract(参考訳): 製造工程の自動化が進むにつれ、精密で洗練された欠陥検出技術への需要が高まっている。
既存の欠陥認識手法の視覚モデルは、現代の製造環境における欠陥の複雑さやバリエーションを扱うには不十分である。
これらのモデルは、特に、限定的または不均衡な欠陥データを含むシナリオで苦労する。
本研究では,新しいメモリ拡張状態空間モデル(SSM)であるMemoryMambaを紹介する。
MemoryMambaは、ステートスペースモデルとメモリ拡張メカニズムを統合することで、システムはトレーニングにおいて不可欠な欠陥固有の情報を維持および取得することができる。
そのアーキテクチャは、依存関係をキャプチャし、欠陥検出に不可欠な欠陥特性を複雑化するように設計されている。
実験では、MemoryMambaは、さまざまな欠陥タイプと複雑さを持つ4つの産業データセットで評価された。
このモデルは、様々な欠陥認識シナリオに適応する能力を示すなど、他の手法よりも一貫して優れていた。
関連論文リスト
- An Evaluation of Continual Learning for Advanced Node Semiconductor Defect Inspection [0.11184789007828977]
本研究は,半導体欠陥検査におけるタスクに依存しないメタラーニング手法を提案する。
新しい欠陥クラスとスケールの漸進的な追加を可能にし、より堅牢で一般化されたモデルを作成する。
我々は、ADIとAEIの2つのプロセスステップに対して、実際のレジストウェハSEM(Scanning Electron Microscopy)データセットを用いて、我々のアプローチをベンチマークした。
論文 参考訳(メタデータ) (2024-07-17T16:41:22Z) - Unified Uncertainty Estimation for Cognitive Diagnosis Models [70.46998436898205]
本稿では,幅広い認知診断モデルに対する統一的不確実性推定手法を提案する。
診断パラメータの不確かさをデータ・アスペクトとモデル・アスペクトに分解する。
本手法は有効であり,認知診断の不確実性に関する有用な知見を提供することができる。
論文 参考訳(メタデータ) (2024-03-09T13:48:20Z) - Defect Spectrum: A Granular Look of Large-Scale Defect Datasets with Rich Semantics [27.03052142039447]
Defect Spectrumは、広範囲の産業的欠陥に対して、正確でセマンティックな、そして大規模なアノテーションを提供する包括的なベンチマークである。
4つの重要な産業ベンチマークに基づいて、私たちのデータセットは既存のアノテーションを洗練し、単一のイメージ内の複数の欠陥タイプを識別する、リッチなセマンティックな詳細を導入します。
また、高品質で多様な欠陥画像を作成するために設計された2段階拡散ベースジェネレータであるDefect-Genを紹介する。
論文 参考訳(メタデータ) (2023-10-26T11:23:24Z) - Monitoring Machine Learning Models: Online Detection of Relevant
Deviations [0.0]
機械学習モデルは、データ分散やその他の要因の変化によって、時間の経過とともに劣化する可能性がある。
本稿では,関連する変化を検出するための逐次モニタリング手法を提案する。
本研究は, 微ゆらぎと有意義な劣化を区別する実用的な解決法である。
論文 参考訳(メタデータ) (2023-09-26T18:46:37Z) - Causal Disentanglement Hidden Markov Model for Fault Diagnosis [55.90917958154425]
本研究では, 軸受破壊機構の因果性を学ぶために, 因果解離隠れマルコフモデル (CDHM) を提案する。
具体的には、時系列データをフル活用し、振動信号を断層関連要因と断層関連要因に段階的に分解する。
アプリケーションの範囲を広げるために、学習された非絡み合った表現を他の作業環境に転送するために、教師なしのドメイン適応を採用する。
論文 参考訳(メタデータ) (2023-08-06T05:58:45Z) - A Novel Strategy for Improving Robustness in Computer Vision
Manufacturing Defect Detection [1.3198689566654107]
高性能製造における視覚的品質検査は、コスト削減と改善された厳密さのために自動化の恩恵を受けることができる。
ディープラーニング技術は、分類やオブジェクト検出といった汎用的なコンピュータビジョンタスクの最先端技術である。
データが反復的であり、そこから学ぶべき欠陥や逸脱のイメージがほとんどないからである。
論文 参考訳(メタデータ) (2023-05-16T12:51:51Z) - Distributional Instance Segmentation: Modeling Uncertainty and High
Confidence Predictions with Latent-MaskRCNN [77.0623472106488]
本稿では,潜在符号を用いた分散インスタンス分割モデルのクラスについて検討する。
ロボットピッキングへの応用として,高い精度を実現するための信頼性マスク手法を提案する。
本手法は,新たにリリースした曖昧なシーンのデータセットを含め,ロボットシステムにおける致命的なエラーを著しく低減できることを示す。
論文 参考訳(メタデータ) (2023-05-03T05:57:29Z) - System Resilience through Health Monitoring and Reconfiguration [56.448036299746285]
人為的なシステムのレジリエンスを、予期せぬ事象に対して向上させるためのエンドツーエンドのフレームワークを実証する。
このフレームワークは物理ベースのデジタルツインモデルと,リアルタイム故障診断,予後,再構成を行う3つのモジュールに基づいている。
論文 参考訳(メタデータ) (2022-08-30T20:16:17Z) - A Feature Memory Rearrangement Network for Visual Inspection of Textured
Surface Defects Toward Edge Intelligent Manufacturing [4.33060257697635]
本稿では,様々なテクスチャ欠陥を同時に検出するための,教師なし機能メモリ再構成ネットワーク(FMR-Net)を提案する。
人工的な人工的な欠陥を用いて、モデルが異常を認識できるようにし、従来の知恵は欠陥のないサンプルにのみ依存する。
FMR-Netは最先端の検査精度を示し、エッジコンピューティング対応のスマート産業で大きな可能性を秘めている。
論文 参考訳(メタデータ) (2022-06-22T04:05:13Z) - DirectDebug: Automated Testing and Debugging of Feature Models [55.41644538483948]
変数モデル(例えば、特徴モデル)は、ソフトウェアアーティファクトの変数と共通性を表現する一般的な方法である。
複雑でしばしば大規模な機能モデルは欠陥になりうる、すなわち、ソフトウェアアーチファクトの期待される変動特性を表現しない。
論文 参考訳(メタデータ) (2021-02-11T11:22:20Z) - Cognitive Visual Inspection Service for LCD Manufacturing Industry [80.63336968475889]
本論文では,現在FPD業界で主流となっている液晶ディスプレイ(LCD)の視覚検査システムについて述べる。
システムは、堅牢/高性能欠陥認識モデルと認知視覚検査サービスアーキテクチャの2つの基礎に基づいています。
論文 参考訳(メタデータ) (2021-01-11T08:14:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。