論文の概要: NeRF-Based defect detection
- arxiv url: http://arxiv.org/abs/2504.00270v1
- Date: Mon, 31 Mar 2025 22:27:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:22:16.116792
- Title: NeRF-Based defect detection
- Title(参考訳): NeRFによる欠陥検出
- Authors: Tianqi, Ding, Dawei Xiang, Yijiashun Qi, Ze Yang, Zunduo Zhao, Tianyao Sun, Pengbin Feng, Haoyu Wang,
- Abstract要約: 本稿では,Neural Radiance Fields(NeRF)に基づく自動欠陥検出フレームワークとディジタルツインの概念を紹介する。
このシステムは、UAVを使って画像を取得し、機械の3Dモデルを再構成し、標準的な基準モデルと現在のモデルの両方を生成して比較する。
- 参考スコア(独自算出の注目度): 6.72800891299482
- License:
- Abstract: The rapid growth of industrial automation has highlighted the need for precise and efficient defect detection in large-scale machinery. Traditional inspection techniques, involving manual procedures such as scaling tall structures for visual evaluation, are labor-intensive, subjective, and often hazardous. To overcome these challenges, this paper introduces an automated defect detection framework built on Neural Radiance Fields (NeRF) and the concept of digital twins. The system utilizes UAVs to capture images and reconstruct 3D models of machinery, producing both a standard reference model and a current-state model for comparison. Alignment of the models is achieved through the Iterative Closest Point (ICP) algorithm, enabling precise point cloud analysis to detect deviations that signify potential defects. By eliminating manual inspection, this method improves accuracy, enhances operational safety, and offers a scalable solution for defect detection. The proposed approach demonstrates great promise for reliable and efficient industrial applications.
- Abstract(参考訳): 産業自動化の急速な成長は、大規模機械における正確かつ効率的な欠陥検出の必要性を浮き彫りにした。
視覚的評価のために背の高い構造物をスケーリングするといった手作業による検査技術は、労働集約的で主観的で、しばしば危険である。
これらの課題を克服するために,Neural Radiance Fields (NeRF) に基づく自動欠陥検出フレームワークとディジタルツインの概念を導入する。
このシステムは、UAVを使って画像を取得し、機械の3Dモデルを再構成し、標準的な基準モデルと現在のモデルの両方を生成して比較する。
モデルのアライメントは、ICP(Iterative Closest Point)アルゴリズムによって達成される。
手動検査をなくすことで、精度を向上し、運用上の安全性を高め、欠陥検出のためのスケーラブルなソリューションを提供する。
提案手法は, 信頼性, 効率の良い産業用アプリケーションへの大きな期待を示すものである。
関連論文リスト
- Defect Detection Network In PCB Circuit Devices Based on GAN Enhanced YOLOv11 [1.6775954077761863]
本研究では, GANを用いた改良YOLOv11モデルを用いたプリント基板(PCB)の表面欠陥検出手法を提案する。
このアプローチは、欠落穴、ラットの噛み傷、オープンサーキット、ショートサーキット、バー、仮想溶接の6つの一般的な欠陥タイプを特定することに焦点を当てている。
強化されたYOLOv11モデルはPCB欠陥データセットで評価され、精度、リコール、堅牢性を大幅に改善した。
論文 参考訳(メタデータ) (2025-01-12T17:26:24Z) - A Hybrid Framework for Statistical Feature Selection and Image-Based Noise-Defect Detection [55.2480439325792]
本稿では,統計的特徴選択と分類技術を統合し,欠陥検出精度を向上させるハイブリッドフレームワークを提案する。
工業画像から抽出した55個の特徴を統計的手法を用いて解析した。
これらの手法をフレキシブルな機械学習アプリケーションに統合することにより、検出精度を改善し、偽陽性や誤分類を減らす。
論文 参考訳(メタデータ) (2024-12-11T22:12:21Z) - Automatic Prompt Generation and Grounding Object Detection for Zero-Shot Image Anomaly Detection [17.06832015516288]
マルチモーダル機械学習パイプラインを用いた産業画像の自動異常検出のためのゼロショットトレーニングフリーアプローチを提案する。
提案モデルにより, 工業生産環境における効率, スケーラブル, 客観的品質管理が可能となる。
論文 参考訳(メタデータ) (2024-11-28T15:42:32Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
顔合成と編集のためのディープフェイク技術は、生成モデルに重大なリスクをもたらす。
本稿では,モデルバックボーン,タイプ,データセット間で検出性能がどう変化するかを検討する。
本稿では、顔画像のパフォーマンスを向上させるContrastive Blurと、ノイズタイプのバイアスに対処し、ドメイン間のパフォーマンスのバランスをとるMINDERを紹介する。
論文 参考訳(メタデータ) (2024-11-28T13:04:45Z) - Uncertainty Estimation for 3D Object Detection via Evidential Learning [63.61283174146648]
本稿では,3次元検出器における鳥の視線表示における明らかな学習損失を利用して,3次元物体検出の不確かさを定量化するためのフレームワークを提案する。
本研究では,これらの不確実性評価の有効性と重要性を,分布外シーンの特定,局所化の不十分な物体の発見,および(偽陰性)検出の欠如について示す。
論文 参考訳(メタデータ) (2024-10-31T13:13:32Z) - Automated Detection of Defects on Metal Surfaces using Vision Transformers [1.6381055567716192]
深層学習技術を用いた視覚変換器(ViT)を用いた金属表面欠陥検出モデルの開発
提案モデルは,特徴抽出のためのViTを用いた欠陥の分類と局所化に焦点を当てている。
実験結果から, 自動欠陥検出, 運転効率の向上, 金属製造における誤差の低減に有効であることが示唆された。
論文 参考訳(メタデータ) (2024-10-06T10:29:45Z) - An Attention-Based Deep Generative Model for Anomaly Detection in Industrial Control Systems [3.303448701376485]
異常検出は、産業制御システムの安全かつ信頼性の高い運用に不可欠である。
本稿では,このニーズを満たすための新しい深層生成モデルを提案する。
論文 参考訳(メタデータ) (2024-05-03T23:58:27Z) - An Improved Anomaly Detection Model for Automated Inspection of Power Line Insulators [0.0]
電力系統の信頼性を確保するためには絶縁体の検査が重要である。
検査プロセスを自動化するために、ディープラーニングがますます活用されています。
本稿では,異常検出とオブジェクト検出の2段階的アプローチを提案する。
論文 参考訳(メタデータ) (2023-11-14T11:36:20Z) - Cal-DETR: Calibrated Detection Transformer [67.75361289429013]
本稿では,Deformable-DETR,UP-DETR,DINOのキャリブレーション検出トランス(Cal-DETR)のメカニズムを提案する。
我々は、不確実性を利用してクラスロジットを変調する不確実性誘導ロジット変調機構を開発する。
その結果、Cal-DETRは、ドメイン内およびドメイン外の両方を校正する競合する列車時間法に対して有効であることがわかった。
論文 参考訳(メタデータ) (2023-11-06T22:13:10Z) - Representing Timed Automata and Timing Anomalies of Cyber-Physical
Production Systems in Knowledge Graphs [51.98400002538092]
本稿では,学習されたタイムドオートマトンとシステムに関する公式知識グラフを組み合わせることで,CPPSのモデルベース異常検出を改善することを目的とする。
モデルと検出された異常の両方を知識グラフに記述し、モデルと検出された異常をより容易に解釈できるようにする。
論文 参考訳(メタデータ) (2023-08-25T15:25:57Z) - Cognitive Visual Inspection Service for LCD Manufacturing Industry [80.63336968475889]
本論文では,現在FPD業界で主流となっている液晶ディスプレイ(LCD)の視覚検査システムについて述べる。
システムは、堅牢/高性能欠陥認識モデルと認知視覚検査サービスアーキテクチャの2つの基礎に基づいています。
論文 参考訳(メタデータ) (2021-01-11T08:14:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。