Mitigating errors in logical qubits
- URL: http://arxiv.org/abs/2405.03766v1
- Date: Mon, 6 May 2024 18:04:41 GMT
- Title: Mitigating errors in logical qubits
- Authors: Samuel C. Smith, Benjamin J. Brown, Stephen D. Bartlett,
- Abstract summary: We develop new methods to quantify logical failure rates with exclusive decoders.
We identify a regime at low error rates where the exclusion rate decays with code distance.
Our work highlights the importance of post-selection as a powerful tool in quantum error correction.
- Score: 1.6385815610837167
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum error correcting codes protect quantum information, allowing for large quantum computations provided that physical error rates are sufficiently low. We combine post-selection with surface code error correction through the use of a parameterized family of exclusive decoders, which are able to abort on decoding instances that are deemed too difficult. We develop new numerical sampling methods to quantify logical failure rates with exclusive decoders as well as the trade-off in terms of the amount of post-selection required. For the most discriminating of exclusive decoders, we demonstrate a threshold of 50\% under depolarizing noise for the surface code (or $32(1)\%$ for the fault-tolerant case with phenomenological measurement errors), and up to a quadratic improvement in logical failure rates below threshold. Furthermore, surprisingly, with a modest exclusion criterion, we identify a regime at low error rates where the exclusion rate decays with code distance, providing a pathway for scalable and time-efficient quantum computing with post-selection. We apply our exclusive decoder to the 15-to-1 magic state distillation protocol, and report a $75\%$ reduction in the number of physical qubits required, and a $60\%$ reduction in the total spacetime volume required, including accounting for repetitions required for post-selection. We also consider other applications, as an error mitigation technique, and in concatenated schemes. Our work highlights the importance of post-selection as a powerful tool in quantum error correction.
Related papers
- Logical Error Rates for a [[4,2,2]]-Encoded Variational Quantum Eigensolver Ansatz [0.0]
We quantify how the quantum error detection code improves the logical error rate, accuracy, and precision of an encoded variational quantum eigensolver application.
We find that the most aggressive post-selection strategies improve the accuracy and precision of the encoded estimates even at the cost of increasing loss of samples.
arXiv Detail & Related papers (2024-05-05T19:02:58Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - The END: An Equivariant Neural Decoder for Quantum Error Correction [73.4384623973809]
We introduce a data efficient neural decoder that exploits the symmetries of the problem.
We propose a novel equivariant architecture that achieves state of the art accuracy compared to previous neural decoders.
arXiv Detail & Related papers (2023-04-14T19:46:39Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Applying the Quantum Error-correcting Codes for Fault-tolerant Blind
Quantum Computation [33.51070104730591]
The Blind Quantum Computation (BQC) is a delegated protocol, which allows a client to rent a remote quantum server to implement desired quantum computations.
We propose a fault-tolerant blind quantum computation protocol with quantum error-correcting codes to avoid the accumulation and propagation of qubit errors during the computing.
arXiv Detail & Related papers (2023-01-05T08:52:55Z) - Matching and maximum likelihood decoding of a multi-round subsystem
quantum error correction experiment [1.2189422792863451]
We perform quantum error correction on superconducting qubits connected in a heavy-hexagon lattice.
Full processor can encode a logical qubit with distance three and perform several rounds of fault-tolerant syndrome measurements.
We show that the logical error varies depending on the use of a perfect matching decoder.
arXiv Detail & Related papers (2022-03-14T15:44:11Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - Erasure conversion for fault-tolerant quantum computing in alkaline
earth Rydberg atom arrays [3.575043595126111]
We propose a qubit encoding and gate protocol for $171$Yb neutral atom qubits that converts the dominant physical errors into erasures.
We estimate that 98% of errors can be converted into erasures.
arXiv Detail & Related papers (2022-01-10T18:56:31Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
State-of-the-art quantum platforms typically have physical error rates near $10-3$.
Quantum error correction (QEC) promises to bridge this divide by distributing quantum logical information across many physical qubits.
We implement 1D repetition codes embedded in a 2D grid of superconducting qubits which demonstrate exponential suppression of bit or phase-flip errors.
arXiv Detail & Related papers (2021-02-11T17:11:20Z) - Cellular automaton decoders for topological quantum codes with noisy
measurements and beyond [68.8204255655161]
We propose an error correction procedure based on a cellular automaton, the sweep rule, which is applicable to a broad range of codes beyond topological quantum codes.
For simplicity, we focus on the three-dimensional (3D) toric code on the rhombic dodecahedral lattice with boundaries and prove that the resulting local decoder has a non-zero error threshold.
We find that this error correction procedure is remarkably robust against measurement errors and is also essentially insensitive to the details of the lattice and noise model.
arXiv Detail & Related papers (2020-04-15T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.