論文の概要: On Adversarial Examples for Text Classification by Perturbing Latent Representations
- arxiv url: http://arxiv.org/abs/2405.03789v1
- Date: Mon, 6 May 2024 18:45:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 18:14:30.654609
- Title: On Adversarial Examples for Text Classification by Perturbing Latent Representations
- Title(参考訳): 摂動潜在表現によるテキスト分類の逆例について
- Authors: Korn Sooksatra, Bikram Khanal, Pablo Rivas,
- Abstract要約: テキスト分類における逆例に対して,ディープラーニングは脆弱であることを示す。
この弱点は、ディープラーニングがそれほど堅牢ではないことを示している。
我々は,テキスト分類器の頑健性を測定するフレームワークを,分類器の勾配を用いて構築する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, with the advancement of deep learning, several applications in text classification have advanced significantly. However, this improvement comes with a cost because deep learning is vulnerable to adversarial examples. This weakness indicates that deep learning is not very robust. Fortunately, the input of a text classifier is discrete. Hence, it can prevent the classifier from state-of-the-art attacks. Nonetheless, previous works have generated black-box attacks that successfully manipulate the discrete values of the input to find adversarial examples. Therefore, instead of changing the discrete values, we transform the input into its embedding vector containing real values to perform the state-of-the-art white-box attacks. Then, we convert the perturbed embedding vector back into a text and name it an adversarial example. In summary, we create a framework that measures the robustness of a text classifier by using the gradients of the classifier.
- Abstract(参考訳): 近年,ディープラーニングの進歩に伴い,テキスト分類におけるいくつかの応用が著しく進歩している。
しかし、ディープラーニングは敵の例に弱いため、この改善にはコストが伴う。
この弱点は、ディープラーニングがそれほど堅牢ではないことを示している。
幸いなことに、テキスト分類器の入力は離散的である。
これにより、分類器が最先端の攻撃を防ぐことができる。
それでも、以前の研究はブラックボックス攻撃を発生させ、入力の離散値をうまく操作して敵の例を見つけることに成功した。
したがって、離散値を変更する代わりに、入力を実値を含む埋め込みベクトルに変換して最先端のホワイトボックス攻撃を行う。
次に、摂動埋め込みベクトルをテキストに変換し、それを逆例とします。
要約すると、分類器の勾配を用いて、テキスト分類器の頑健さを測定するフレームワークを作成する。
関連論文リスト
- Forging the Forger: An Attempt to Improve Authorship Verification via Data Augmentation [52.72682366640554]
著者検証(英語: Authorship Verification, AV)とは、ある特定の著者によって書かれたか、別の人物によって書かれたのかを推測するテキスト分類タスクである。
多くのAVシステムは敵の攻撃に弱いことが示されており、悪意のある著者は、その書体スタイルを隠蔽するか、あるいは他の著者の書体を模倣することによって、積極的に分類者を騙そうとしている。
論文 参考訳(メタデータ) (2024-03-17T16:36:26Z) - SenTest: Evaluating Robustness of Sentence Encoders [0.4194295877935868]
本研究は文エンコーダの堅牢性を評価することに焦点を当てる。
我々はその堅牢性を評価するためにいくつかの敵攻撃を用いる。
実験結果は文エンコーダの堅牢性を強く損なう。
論文 参考訳(メタデータ) (2023-11-29T15:21:35Z) - Verifying the Robustness of Automatic Credibility Assessment [50.55687778699995]
入力テキストにおける意味保存的変化がモデルを誤解させる可能性があることを示す。
また、誤情報検出タスクにおける被害者モデルと攻撃方法の両方をテストするベンチマークであるBODEGAについても紹介する。
我々の実験結果によると、現代の大規模言語モデルは、以前のより小さなソリューションよりも攻撃に対して脆弱であることが多い。
論文 参考訳(メタデータ) (2023-03-14T16:11:47Z) - Block-Sparse Adversarial Attack to Fool Transformer-Based Text
Classifiers [49.50163349643615]
本稿では,変圧器を用いたテキスト分類器に対して,勾配に基づく逆攻撃を提案する。
実験結果から, 文の意味を抑えながら, GPT-2の精度を5%以下に抑えることができた。
論文 参考訳(メタデータ) (2022-03-11T14:37:41Z) - Improving Robustness of Malware Classifiers using Adversarial Strings
Generated from Perturbed Latent Representations [0.0]
マルウェアの作者は、マルウェアの新しいバージョンで乱数を生成したり、使用量を修正したりすることで、検出を避けようとしている。
提案手法は教師なし方式で入力文字列の潜在表現を学習する。
これらの例を用いて、生成された文字列の逆数集合をトレーニングすることで、分類器の堅牢性を改善する。
論文 参考訳(メタデータ) (2021-10-22T18:12:00Z) - A Differentiable Language Model Adversarial Attack on Text Classifiers [10.658675415759697]
自然言語処理のための新しいブラックボックス文レベルアタックを提案する。
本手法は,事前学習した言語モデルを微調整して,逆例を生成する。
提案手法は, 計算量と人的評価の両方において, 多様なNLP問題において, 競合相手よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-07-23T14:43:13Z) - Detecting Adversarial Examples by Input Transformations, Defense
Perturbations, and Voting [71.57324258813674]
畳み込みニューラルネットワーク(CNN)は、視覚認識タスクにおいて超人的性能に達することが証明されている。
CNNは敵の例、すなわち不正な出力をネットワークに強制する悪意のある画像によって簡単に騙される。
本稿では,画像変換による敵例の検出を幅広く検討し,新しい手法を提案する。
論文 参考訳(メタデータ) (2021-01-27T14:50:41Z) - Learning and Evaluating Representations for Deep One-class
Classification [59.095144932794646]
ディープワンクラス分類のための2段階フレームワークを提案する。
まず,一級データから自己教師付き表現を学習し,学習した表現に基づいて一級分類器を構築する。
実験では、視覚領域の1クラス分類ベンチマークで最先端の性能を示す。
論文 参考訳(メタデータ) (2020-11-04T23:33:41Z) - TextDecepter: Hard Label Black Box Attack on Text Classifiers [0.0]
自然言語処理(NLP)分類器に対するハードラベルブラックボックス攻撃に対する新しいアプローチを提案する。
このような攻撃シナリオは、感情分析や有害なコンテンツ検出といったセキュリティに敏感なアプリケーションに使われている現実世界のブラックボックスモデルにも適用される。
論文 参考訳(メタデータ) (2020-08-16T08:57:01Z) - Certified Robustness to Label-Flipping Attacks via Randomized Smoothing [105.91827623768724]
機械学習アルゴリズムは、データ中毒攻撃の影響を受けやすい。
任意の関数に対するランダム化スムージングの統一的なビューを示す。
本稿では,一般的なデータ中毒攻撃に対して,ポイントワイズで確実に堅牢な分類器を構築するための新しい戦略を提案する。
論文 参考訳(メタデータ) (2020-02-07T21:28:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。