論文の概要: Improving Robustness of Malware Classifiers using Adversarial Strings
Generated from Perturbed Latent Representations
- arxiv url: http://arxiv.org/abs/2110.11987v1
- Date: Fri, 22 Oct 2021 18:12:00 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-26 17:39:46.153885
- Title: Improving Robustness of Malware Classifiers using Adversarial Strings
Generated from Perturbed Latent Representations
- Title(参考訳): 摂動潜在表現からの逆文字列を用いたマルウェア分類器のロバスト性向上
- Authors: Marek Galovic, Branislav Bosansky, Viliam Lisy
- Abstract要約: マルウェアの作者は、マルウェアの新しいバージョンで乱数を生成したり、使用量を修正したりすることで、検出を避けようとしている。
提案手法は教師なし方式で入力文字列の潜在表現を学習する。
これらの例を用いて、生成された文字列の逆数集合をトレーニングすることで、分類器の堅牢性を改善する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In malware behavioral analysis, the list of accessed and created files very
often indicates whether the examined file is malicious or benign. However,
malware authors are trying to avoid detection by generating random filenames
and/or modifying used filenames with new versions of the malware. These changes
represent real-world adversarial examples. The goal of this work is to generate
realistic adversarial examples and improve the classifier's robustness against
these attacks. Our approach learns latent representations of input strings in
an unsupervised fashion and uses gradient-based adversarial attack methods in
the latent domain to generate adversarial examples in the input domain. We use
these examples to improve the classifier's robustness by training on the
generated adversarial set of strings. Compared to classifiers trained only on
perturbed latent vectors, our approach produces classifiers that are
significantly more robust without a large trade-off in standard accuracy.
- Abstract(参考訳): マルウェアの行動分析では、アクセスされたファイルのリストは、検査されたファイルが悪意があるかどうかを示すことが多い。
しかし、マルウェアの作者は、ランダムなファイル名を生成したり、新しいバージョンのマルウェアで使用されるファイル名を変更したりすることで、検出を避けようとしている。
これらの変化は現実世界の敵の例を表している。
この研究の目的は、現実的な敵の例を生成し、これらの攻撃に対する分類器の堅牢性を改善することである。
提案手法は教師なし方式で入力文字列の潜時表現を学習し、潜時領域における勾配に基づく逆攻撃法を用いて入力領域における逆攻撃例を生成する。
これらの例を用いて,生成した文字列の逆行集合をトレーニングすることにより,分類器のロバスト性を改善する。
摂動ベクトルでのみ訓練された分類器と比較して, 標準精度に大きなトレードオフを伴わずに, はるかに堅牢な分類器を生成する。
関連論文リスト
- MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
マルウェアを識別する強力な識別能力を持つ強力な検出器MASKDROIDを提案する。
我々は、グラフニューラルネットワークベースのフレームワークにマスキング機構を導入し、MASKDROIDに入力グラフ全体の復元を強制する。
この戦略により、モデルは悪意のあるセマンティクスを理解し、より安定した表現を学習し、敵攻撃に対する堅牢性を高めることができる。
論文 参考訳(メタデータ) (2024-09-29T07:22:47Z) - On Adversarial Examples for Text Classification by Perturbing Latent Representations [0.0]
テキスト分類における逆例に対して,ディープラーニングは脆弱であることを示す。
この弱点は、ディープラーニングがそれほど堅牢ではないことを示している。
我々は,テキスト分類器の頑健性を測定するフレームワークを,分類器の勾配を用いて構築する。
論文 参考訳(メタデータ) (2024-05-06T18:45:18Z) - A Robust Defense against Adversarial Attacks on Deep Learning-based
Malware Detectors via (De)Randomized Smoothing [4.97719149179179]
本稿では,(デ)ランダム化平滑化に触発された敵のマルウェアに対する現実的な防御法を提案する。
本研究では,マルウェア作者が挿入した敵対的コンテンツを,バイトの関連部分集合を選択することでサンプリングする可能性を減らす。
論文 参考訳(メタデータ) (2024-02-23T11:30:12Z) - How adversarial attacks can disrupt seemingly stable accurate classifiers [76.95145661711514]
敵攻撃は、入力データに不連続な修正を加えることで、非正確な学習システムの出力を劇的に変化させる。
ここでは,これは高次元入力データを扱う分類器の基本的特徴であると考えられる。
実用システムで観測される重要な振る舞いを高い確率で発生させる、単純で汎用的なフレームワークを導入する。
論文 参考訳(メタデータ) (2023-09-07T12:02:00Z) - Towards a Practical Defense against Adversarial Attacks on Deep
Learning-based Malware Detectors via Randomized Smoothing [3.736916304884177]
本稿では,ランダムな平滑化に触発された敵のマルウェアに対する現実的な防御法を提案する。
本研究では,入力のランダム化にガウスノイズやラプラスノイズを使う代わりに,ランダム化アブレーションに基づく平滑化方式を提案する。
BODMASデータセットに対する様々な最先端の回避攻撃に対するアブレーションモデルの有効性を実証的に評価した。
論文 参考訳(メタデータ) (2023-08-17T10:30:25Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - Detection of Adversarial Supports in Few-shot Classifiers Using Feature
Preserving Autoencoders and Self-Similarity [89.26308254637702]
敵対的なサポートセットを強調するための検出戦略を提案する。
我々は,特徴保存型オートエンコーダフィルタリングと,この検出を行うサポートセットの自己相似性の概念を利用する。
提案手法は攻撃非依存であり, 最善の知識まで, 数発分類器の検出を探索する最初の方法である。
論文 参考訳(メタデータ) (2020-12-09T14:13:41Z) - A survey on practical adversarial examples for malware classifiers [0.17767466724342065]
ディープニューラルネットワークは敵の例に弱いことが判明した。
この脆弱性を悪用して、回避可能なマルウェアサンプルを作成することができる。
敵のマルウェアの例を生成するマルウェア分類器に対する実践的な攻撃についてレビューする。
論文 参考訳(メタデータ) (2020-11-06T17:07:34Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
EXEmplesは、比較的少ない入力バイトを摂動することで、機械学習に基づく検出をバイパスすることができる。
我々は、機械学習モデルに対する過去の攻撃を包含し、一般化するだけでなく、3つの新たな攻撃を含む統一フレームワークを開発する。
これらの攻撃はFull DOS、Extended、Shiftと呼ばれ、DOSヘッダをそれぞれ操作し、拡張し、第1セクションの内容を変更することで、敵のペイロードを注入する。
論文 参考訳(メタデータ) (2020-08-17T07:16:57Z) - MDEA: Malware Detection with Evolutionary Adversarial Learning [16.8615211682877]
MDEA(Adversarial Malware Detection)モデルであるMDEAは、進化的最適化を使用して攻撃サンプルを作成し、ネットワークを回避攻撃に対して堅牢にする。
進化したマルウェアサンプルでモデルを再トレーニングすることで、その性能は大幅に改善される。
論文 参考訳(メタデータ) (2020-02-09T09:59:56Z) - Certified Robustness to Label-Flipping Attacks via Randomized Smoothing [105.91827623768724]
機械学習アルゴリズムは、データ中毒攻撃の影響を受けやすい。
任意の関数に対するランダム化スムージングの統一的なビューを示す。
本稿では,一般的なデータ中毒攻撃に対して,ポイントワイズで確実に堅牢な分類器を構築するための新しい戦略を提案する。
論文 参考訳(メタデータ) (2020-02-07T21:28:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。