UniGen: Unified Modeling of Initial Agent States and Trajectories for Generating Autonomous Driving Scenarios
- URL: http://arxiv.org/abs/2405.03807v1
- Date: Mon, 6 May 2024 19:31:25 GMT
- Title: UniGen: Unified Modeling of Initial Agent States and Trajectories for Generating Autonomous Driving Scenarios
- Authors: Reza Mahjourian, Rongbing Mu, Valerii Likhosherstov, Paul Mougin, Xiukun Huang, Joao Messias, Shimon Whiteson,
- Abstract summary: UniGen is a novel approach to generating new traffic scenarios through simulation.
By predicting the distributions of all these variables from a shared global scenario embedding, we ensure that the final generated scenario is fully conditioned on all available context in the existing scene.
- Score: 32.49058188310724
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces UniGen, a novel approach to generating new traffic scenarios for evaluating and improving autonomous driving software through simulation. Our approach models all driving scenario elements in a unified model: the position of new agents, their initial state, and their future motion trajectories. By predicting the distributions of all these variables from a shared global scenario embedding, we ensure that the final generated scenario is fully conditioned on all available context in the existing scene. Our unified modeling approach, combined with autoregressive agent injection, conditions the placement and motion trajectory of every new agent on all existing agents and their trajectories, leading to realistic scenarios with low collision rates. Our experimental results show that UniGen outperforms prior state of the art on the Waymo Open Motion Dataset.
Related papers
- Enhanced Prediction of Multi-Agent Trajectories via Control Inference and State-Space Dynamics [14.694200929205975]
This paper introduces a novel methodology for trajectory forecasting based on state-space dynamic system modeling.
To enhance the precision of state estimations within the dynamic system, the paper also presents a novel modeling technique for control variables.
The proposed approach ingeniously integrates graph neural networks with state-space models, effectively capturing the complexities of multi-agent interactions.
arXiv Detail & Related papers (2024-08-08T08:33:02Z) - Vectorized Representation Dreamer (VRD): Dreaming-Assisted Multi-Agent Motion-Forecasting [2.2020053359163305]
We introduce VRD, a vectorized world model-inspired approach to the multi-agent motion forecasting problem.
Our method combines a traditional open-loop training regime with a novel dreamed closed-loop training pipeline.
Our model achieves state-of-the-art performance on the single prediction miss rate metric.
arXiv Detail & Related papers (2024-06-20T15:34:17Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
We introduce SAFE-SIM, a controllable closed-loop safety-critical simulation framework.
Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations.
We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability.
arXiv Detail & Related papers (2023-12-31T04:14:43Z) - RealGen: Retrieval Augmented Generation for Controllable Traffic Scenarios [58.62407014256686]
RealGen is a novel retrieval-based in-context learning framework for traffic scenario generation.
RealGen synthesizes new scenarios by combining behaviors from multiple retrieved examples in a gradient-free way.
This in-context learning framework endows versatile generative capabilities, including the ability to edit scenarios.
arXiv Detail & Related papers (2023-12-19T23:11:06Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
A longstanding challenge for self-driving development is simulating dynamic driving scenarios seeded from recorded driving logs.
We apply tools from discrete sequence modeling to model how vehicles, pedestrians and cyclists interact in driving scenarios.
Our model tops the Sim Agents Benchmark, surpassing prior work along the realism meta metric by 3.3% and along the interaction metric by 9.9%.
arXiv Detail & Related papers (2023-12-07T18:53:27Z) - SceneDM: Scene-level Multi-agent Trajectory Generation with Consistent
Diffusion Models [10.057312592344507]
We propose a novel framework based on diffusion models, called SceneDM, to generate joint and consistent future motions of all the agents in a scene.
SceneDM achieves state-of-the-art results on the Sim Agents Benchmark.
arXiv Detail & Related papers (2023-11-27T11:39:27Z) - A Diffusion-Model of Joint Interactive Navigation [14.689298253430568]
We present DJINN - a diffusion based method of generating traffic scenarios.
Our approach jointly diffuses the trajectories of all agents, conditioned on a flexible set of state observations from the past, present, or future.
We show how DJINN flexibly enables direct test-time sampling from a variety of valuable conditional distributions.
arXiv Detail & Related papers (2023-09-21T22:10:20Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
We show data-driven traffic simulation can be formulated as a world model.
We present TrafficBots, a multi-agent policy built upon motion prediction and end-to-end driving.
Experiments on the open motion dataset show TrafficBots can simulate realistic multi-agent behaviors.
arXiv Detail & Related papers (2023-03-07T18:28:41Z) - Imagining The Road Ahead: Multi-Agent Trajectory Prediction via
Differentiable Simulation [17.953880589741438]
We develop a deep generative model built on a fully differentiable simulator for trajectory prediction.
We achieve state-of-the-art results on the INTERACTION dataset, using standard neural architectures and a standard variational training objective.
We name our model ITRA, for "Imagining the Road Ahead"
arXiv Detail & Related papers (2021-04-22T17:48:08Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
We propose TrafficSim, a multi-agent behavior model for realistic traffic simulation.
In particular, we leverage an implicit latent variable model to parameterize a joint actor policy.
We show TrafficSim generates significantly more realistic and diverse traffic scenarios as compared to a diverse set of baselines.
arXiv Detail & Related papers (2021-01-17T00:29:30Z) - Instance-Aware Predictive Navigation in Multi-Agent Environments [93.15055834395304]
We propose an Instance-Aware Predictive Control (IPC) approach, which forecasts interactions between agents as well as future scene structures.
We adopt a novel multi-instance event prediction module to estimate the possible interaction among agents in the ego-centric view.
We design a sequential action sampling strategy to better leverage predicted states on both scene-level and instance-level.
arXiv Detail & Related papers (2021-01-14T22:21:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.