Large Language Models as Instruments of Power: New Regimes of Autonomous Manipulation and Control
- URL: http://arxiv.org/abs/2405.03813v1
- Date: Mon, 6 May 2024 19:52:57 GMT
- Title: Large Language Models as Instruments of Power: New Regimes of Autonomous Manipulation and Control
- Authors: Yaqub Chaudhary, Jonnie Penn,
- Abstract summary: Large language models (LLMs) can reproduce a wide variety of rhetorical styles and generate text that expresses a broad spectrum of sentiments.
We consider a set of underestimated societal harms made possible by the rapid and largely unregulated adoption of LLMs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) can reproduce a wide variety of rhetorical styles and generate text that expresses a broad spectrum of sentiments. This capacity, now available at low cost, makes them powerful tools for manipulation and control. In this paper, we consider a set of underestimated societal harms made possible by the rapid and largely unregulated adoption of LLMs. Rather than consider LLMs as isolated digital artefacts used to displace this or that area of work, we focus on the large-scale computational infrastructure upon which they are instrumentalised across domains. We begin with discussion on how LLMs may be used to both pollute and uniformize information environments and how these modalities may be leveraged as mechanisms of control. We then draw attention to several areas of emerging research, each of which compounds the capabilities of LLMs as instruments of power. These include (i) persuasion through the real-time design of choice architectures in conversational interfaces (e.g., via "AI personas"), (ii) the use of LLM-agents as computational models of human agents (e.g., "silicon subjects"), (iii) the use of LLM-agents as computational models of human agent populations (e.g., "silicon societies") and finally, (iv) the combination of LLMs with reinforcement learning to produce controllable and steerable strategic dialogue models. We draw these strands together to discuss how these areas may be combined to build LLM-based systems that serve as powerful instruments of individual, social and political control via the simulation and disingenuous "prediction" of human behaviour, intent, and action.
Related papers
- MALMM: Multi-Agent Large Language Models for Zero-Shot Robotics Manipulation [52.739500459903724]
Large Language Models (LLMs) have demonstrated remarkable planning abilities across various domains, including robotics manipulation and navigation.
We propose a novel multi-agent LLM framework that distributes high-level planning and low-level control code generation across specialized LLM agents.
We evaluate our approach on nine RLBench tasks, including long-horizon tasks, and demonstrate its ability to solve robotics manipulation in a zero-shot setting.
arXiv Detail & Related papers (2024-11-26T17:53:44Z) - Large Language Models for Base Station Siting: Intelligent Deployment based on Prompt or Agent [62.16747639440893]
Large language models (LLMs) and their associated technologies advance, particularly in the realms of prompt engineering and agent engineering.
This approach entails the strategic use of well-crafted prompts to infuse human experience and knowledge into these sophisticated LLMs.
This integration represents the future paradigm of artificial intelligence (AI) as a service and AI for more ease.
arXiv Detail & Related papers (2024-08-07T08:43:32Z) - Harnessing the power of LLMs for normative reasoning in MASs [3.1796285054362605]
Large Language Models (LLMs) offer rich and expressive vocabulary for norms.
LLMs can perform a range of tasks such as norm discovery, normative reasoning and decision-making.
This paper aims to foster collaboration between MAS, NLP and LLM researchers in order to advance the field of normative agents.
arXiv Detail & Related papers (2024-03-25T08:09:01Z) - LLMArena: Assessing Capabilities of Large Language Models in Dynamic
Multi-Agent Environments [35.926581910260076]
We introduce LLMArena, a framework for evaluating the capabilities of large language models in multi-agent dynamic environments.
LLArena employs Trueskill scoring to assess crucial abilities in LLM agents, including spatial reasoning, strategic planning, numerical reasoning, risk assessment, communication, opponent modeling, and team collaboration.
We conduct an extensive experiment and human evaluation among different sizes and types of LLMs, showing that LLMs still have a significant journey ahead in their development towards becoming fully autonomous agents.
arXiv Detail & Related papers (2024-02-26T11:31:48Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
Large language models (LLMs) have demonstrated remarkable capabilities across a wide array of tasks.
The capability to explain in natural language allows LLMs to expand the scale and complexity of patterns that can be given to a human.
These new capabilities raise new challenges, such as hallucinated explanations and immense computational costs.
arXiv Detail & Related papers (2024-01-30T17:38:54Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
This paper introduces the LMRL-Gym benchmark for evaluating multi-turn RL for large language models (LLMs)
Our benchmark consists of 8 different language tasks, which require multiple rounds of language interaction and cover a range of tasks in open-ended dialogue and text games.
arXiv Detail & Related papers (2023-11-30T03:59:31Z) - Large Language Models as Subpopulation Representative Models: A Review [5.439020425819001]
Large language models (LLMs) could be used to estimate subpopulation representative models (SRMs)
LLMs could provide an alternate or complementary way to measure public opinion among demographic, geographic, or political segments of the population.
arXiv Detail & Related papers (2023-10-27T04:31:27Z) - Let Models Speak Ciphers: Multiagent Debate through Embeddings [84.20336971784495]
We introduce CIPHER (Communicative Inter-Model Protocol Through Embedding Representation) to address this issue.
By deviating from natural language, CIPHER offers an advantage of encoding a broader spectrum of information without any modification to the model weights.
This showcases the superiority and robustness of embeddings as an alternative "language" for communication among LLMs.
arXiv Detail & Related papers (2023-10-10T03:06:38Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous
Driving [87.1164964709168]
This work employs Large Language Models (LLMs) as a decision-making component for complex autonomous driving scenarios.
Extensive experiments demonstrate that our proposed method not only consistently surpasses baseline approaches in single-vehicle tasks, but also helps handle complex driving behaviors even multi-vehicle coordination.
arXiv Detail & Related papers (2023-10-04T17:59:49Z) - Large Language Models Humanize Technology [6.127963013089406]
Large Language Models (LLMs) have made rapid progress in recent months and weeks.
This has sparked concerns about aligning these models with human values, their impact on labor markets, and the potential need for regulation.
We argue that LLMs exhibit emergent abilities to humanize technology more effectively than previous technologies.
arXiv Detail & Related papers (2023-05-09T16:05:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.