Efficient Radiation Treatment Planning based on Voxel Importance
- URL: http://arxiv.org/abs/2405.03880v2
- Date: Fri, 9 Aug 2024 14:49:19 GMT
- Title: Efficient Radiation Treatment Planning based on Voxel Importance
- Authors: Sebastian Mair, Anqi Fu, Jens Sjölund,
- Abstract summary: We propose an approach to reduce the large optimization problem by only using a representative subset of informative voxels.
Empirical experiments on open benchmark data highlight substantially reduced optimization times, up to 50 times faster than the original ones.
- Score: 1.9712632719704106
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Radiation treatment planning involves optimization over a large number of voxels, many of which carry limited information about the clinical problem. We propose an approach to reduce the large optimization problem by only using a representative subset of informative voxels. This way, we drastically improve planning efficiency while maintaining the plan quality. Within an initial probing step, we pre-solve an easier optimization problem involving a simplified objective from which we derive an importance score per voxel. This importance score is then turned into a sampling distribution, which allows us to subsample a small set of informative voxels using importance sampling. By solving a - now reduced - version of the original optimization problem using this subset, we effectively reduce the problem's size and computational demands while accounting for regions where satisfactory dose deliveries are challenging. In contrast to other stochastic (sub-)sampling methods, our technique only requires a single probing and sampling step to define a reduced optimization problem. This problem can be efficiently solved using established solvers without the need of modifying or adapting them. Empirical experiments on open benchmark data highlight substantially reduced optimization times, up to 50 times faster than the original ones, for intensity-modulated radiation therapy (IMRT), all while upholding plan quality comparable to traditional methods. Our novel approach has the potential to significantly accelerate radiation treatment planning by addressing its inherent computational challenges. We reduce the treatment planning time by reducing the size of the optimization problem rather than modifying and improving the optimization method. Our efforts are thus complementary to many previous developments.
Related papers
- Preference Optimization for Combinatorial Optimization Problems [54.87466279363487]
Reinforcement Learning (RL) has emerged as a powerful tool for neural optimization, enabling models learns that solve complex problems without requiring expert knowledge.<n>Despite significant progress, existing RL approaches face challenges such as diminishing reward signals and inefficient exploration in vast action spaces.<n>We propose Preference Optimization, a novel method that transforms quantitative reward signals into qualitative preference signals via statistical comparison modeling.
arXiv Detail & Related papers (2025-05-13T16:47:00Z) - Refined Coreset Selection: Towards Minimal Coreset Size under Model
Performance Constraints [69.27190330994635]
Coreset selection is powerful in reducing computational costs and accelerating data processing for deep learning algorithms.
We propose an innovative method, which maintains optimization priority order over the model performance and coreset size.
Empirically, extensive experiments confirm its superiority, often yielding better model performance with smaller coreset sizes.
arXiv Detail & Related papers (2023-11-15T03:43:04Z) - Prescriptive PCA: Dimensionality Reduction for Two-stage Stochastic
Optimization [1.1612308609123565]
We develop a prescriptive dimensionality reduction framework that aims to minimize the degree of suboptimality in the optimization phase.
For the case where the downstream optimization problem has an expected value objective, we show that prescriptive dimensionality reduction can be performed via solving a distributionally-robust optimization problem.
Our approach significantly outperforms principal component analysis with real and synthetic data sets.
arXiv Detail & Related papers (2023-06-04T00:50:35Z) - A Data-Driven Evolutionary Transfer Optimization for Expensive Problems
in Dynamic Environments [9.098403098464704]
Data-driven, a.k.a. surrogate-assisted, evolutionary optimization has been recognized as an effective approach for tackling expensive black-box optimization problems.
This paper proposes a simple but effective transfer learning framework to empower data-driven evolutionary optimization to solve dynamic optimization problems.
Experiments on synthetic benchmark test problems and a real-world case study demonstrate the effectiveness of our proposed algorithm.
arXiv Detail & Related papers (2022-11-05T11:19:50Z) - Towards the optimization of ballistics in proton therapy using genetic
algorithms: implementation issues [0.0]
We investigate a new optimization framework based on a genetic algorithm approach.
The proposed optimization routine takes typically into account several thousands of spots of fixed size.
The behavior of the proposed genetic algorithm is illustrated in both elementary and clinically-realistic test cases.
arXiv Detail & Related papers (2022-05-17T12:31:14Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
We explore the connection between high-dimensional statistics and non-robust optimization in the presence of sparsity constraints.
We develop novel and simple optimization formulations for these problems.
As a corollary, we obtain that any first-order method that efficiently converges to station yields an efficient algorithm for these tasks.
arXiv Detail & Related papers (2021-09-23T17:38:24Z) - Latent Space Arc Therapy Optimization [1.1186291300604743]
arc therapy planning is a challenging problem in high-dimensional, non-informed optimization.
In this paper we address the issue of arc therapy optimization with unsupervised deep learning.
An engine is built based on low-dimensional arc representations which facilitates faster planning times.
arXiv Detail & Related papers (2021-05-24T19:06:00Z) - Resource Planning for Hospitals Under Special Consideration of the
COVID-19 Pandemic: Optimization and Sensitivity Analysis [87.31348761201716]
Crises like the COVID-19 pandemic pose a serious challenge to health-care institutions.
BaBSim.Hospital is a tool for capacity planning based on discrete event simulation.
We aim to investigate and optimize these parameters to improve BaBSim.Hospital.
arXiv Detail & Related papers (2021-05-16T12:38:35Z) - Decomposition and Adaptive Sampling for Data-Driven Inverse Linear
Optimization [12.610576072466895]
This work addresses inverse linear optimization where the goal is to infer the unknown cost vector of a linear program.
We introduce a new formulation of the problem that, compared to other existing methods, allows the recovery of a less restrictive and generally more appropriate admissible set of cost estimates.
arXiv Detail & Related papers (2020-09-16T22:25:31Z) - Boosting Data Reduction for the Maximum Weight Independent Set Problem
Using Increasing Transformations [59.84561168501493]
We introduce new generalized data reduction and transformation rules for the maximum weight independent set problem.
Surprisingly, these so-called increasing transformations can simplify the problem and also open up the reduction space to yield even smaller irreducible graphs later in the algorithm.
Our algorithm computes significantly smaller irreducible graphs on all except one instance, solves more instances to optimality than previously possible, is up to two orders of magnitude faster than the best state-of-the-art solver, and finds higher-quality solutions than solvers DynWVC and HILS.
arXiv Detail & Related papers (2020-08-12T08:52:50Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z) - Effective Dimension Adaptive Sketching Methods for Faster Regularized
Least-Squares Optimization [56.05635751529922]
We propose a new randomized algorithm for solving L2-regularized least-squares problems based on sketching.
We consider two of the most popular random embeddings, namely, Gaussian embeddings and the Subsampled Randomized Hadamard Transform (SRHT)
arXiv Detail & Related papers (2020-06-10T15:00:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.