High Fidelity Artificial Quantum Thermal State Generation using Encoded Coherent States
- URL: http://arxiv.org/abs/2405.03881v2
- Date: Fri, 11 Oct 2024 16:22:46 GMT
- Title: High Fidelity Artificial Quantum Thermal State Generation using Encoded Coherent States
- Authors: Haley Weinstein, Bruno Avritzer, Todd A. Brun, Jonathan L. Habif,
- Abstract summary: Quantum steganography is a powerful method for information security where communications are disguised as naturally occurring noise in a channel.
We encoded the phase and amplitude of weak coherent laser states such that a third party monitoring the communications channel would see an amalgamation of states indistinguishable from thermal noise light.
- Score: 0.0
- License:
- Abstract: Quantum steganography is a powerful method for information security where communications between a sender and receiver are disguised as naturally occurring noise in a channel. We encoded the phase and amplitude of weak coherent laser states such that a third party monitoring the communications channel, measuring the flow of optical states through the channel, would see an amalgamation of states indistinguishable from thermal noise light. Using quantum state tomography, we experimentally reconstructed the density matrices for artificially engineered thermal states and spontaneous emission from an optical amplifier and verified a state fidelity F>0.98 when compared with theoretical thermal states.
Related papers
- Path-entangled radiation from kinetic inductance amplifier [0.0]
We introduce a kinetic inductance quantum-limited amplifier that generates stationary path-entangled microwave radiation.
This work highlights the potential of kinetic inductance parametric amplifiers for practical applications such as quantum teleportation, distributed quantum computing, and enhanced quantum sensing.
arXiv Detail & Related papers (2024-06-19T06:00:43Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - Quantum repeater via entangled phase modulated multimode coherent states [0.07068424156229525]
We present a scheme of quantum repeater that uses entangled multimode coherent states which are obtained by electro-optic modulation of symmetric and antisymmetric Schr"odinger cat states.
In this method subcarrier modes of the phase modulated states generated by the remote parties are sent to a symmetric beam splitter at the central node.
The entangled coherent states are heraldedly prepared by photon counting measurements at the output channels of the beam splitter.
arXiv Detail & Related papers (2022-11-07T14:35:59Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Fundamental Limits of Thermal-noise Lossy Bosonic Multiple Access
Channel [1.2792576041526287]
Bosonic channels describe quantum-mechanically many practical communication links such as optical, microwave, and radiofrequency.
We investigate the maximum rates for the bosonic multiple access channel (MAC) in the presence of thermal noise added by the environment.
We additionally find that the use of coherent states at the transmitters is capacity-achieving in the limits of high and low mean input photon numbers.
arXiv Detail & Related papers (2022-07-01T01:31:42Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - High photon number entangled states and coherent state superposition
from the extreme-ultraviolet to the far infrared [0.0]
We present a theoretical demonstration on the generation of entangled coherent states and of coherent state superpositions.
It is found that all field modes involved in the high harmonic generation process are entangled, and upon performing a quantum operation, leads to the generation of high photon number optical cat states.
These states can be considered as a new resource for fundamental tests of quantum theory, quantum information processing or sensing with non-classical states of light.
arXiv Detail & Related papers (2021-07-27T15:40:23Z) - Conditional preparation of non-Gaussian quantum optical states by
mesoscopic measurement [62.997667081978825]
Non-Gaussian states of an optical field are important as a proposed resource in quantum information applications.
We propose a novel approach involving displacement of the ancilla field into the regime where mesoscopic detectors can be used.
We conclude that states with strong Wigner negativity can be prepared at high rates by this technique under experimentally attainable conditions.
arXiv Detail & Related papers (2021-03-29T16:59:18Z) - Mid-infrared homodyne balanced detector for quantum light
characterization [52.77024349608834]
We present the characterization of a novel balanced homodyne detector operating in the mid-infrared.
We discuss the experimental results with a view to possible applications to quantum technologies, such as free-space quantum communication.
arXiv Detail & Related papers (2021-03-16T11:08:50Z) - Two-way covert quantum communication in the microwave regime [0.0]
Quantum communication addresses the problem of exchanging information across macroscopic distances.
We advance a new paradigm for secure quantum communication by combining backscattering concepts with covert communication in the microwave regime.
This work makes a decisive step toward implementing secure quantum communication concepts in the previously uncharted $1$-$10$ GHz frequency range.
arXiv Detail & Related papers (2020-04-15T16:36:59Z) - Information transfer by quantum matterwave modulation [68.8204255655161]
We show that matterwaves can be applied for information transfer and that their quantum nature provides a high level of security.
Our technique allows transmitting a message by a non-trivial modulation of an electron matterwave in a biprism interferometer.
We also present a key distribution protocol based on the quantum nature of the matterwaves that can reveal active eavesdropping.
arXiv Detail & Related papers (2020-03-19T03:37:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.