論文の概要: sqlelf: a SQL-centric Approach to ELF Analysis
- arxiv url: http://arxiv.org/abs/2405.03883v1
- Date: Mon, 6 May 2024 22:01:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 15:57:58.618119
- Title: sqlelf: a SQL-centric Approach to ELF Analysis
- Title(参考訳): sqlelf: ELF分析におけるSQL中心のアプローチ
- Authors: Farid Zakaria, Zheyuan Chen, Andrew Quinn, Thomas R. W. Scogland,
- Abstract要約: 我々は,Sqlの表現力を通じてELFオブジェクトを探索する革新的なツールであるsqlelfを紹介した。
ELFオブジェクトをリレーショナルデータベースとしてモデル化することで、sqlelfは従来の方法よりも次の利点を提供する。
我々の評価では、sqlelfはELFオブジェクトに対するよりニュアンスで包括的な洞察を提供するだけでなく、従来のALF探索作業に必要な労力と時間を大幅に削減する。
- 参考スコア(独自算出の注目度): 0.5650648613330266
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The exploration and understanding of Executable and Linkable Format (ELF) objects underpin various critical activities in computer systems, from debugging to reverse engineering. Traditional UNIX tooling like readelf, nm, and objdump have served the community reliably over the years. However, as the complexity and scale of software projects has grown, there arises a need for more intuitive, flexible, and powerful methods to investigate ELF objects. In this paper, we introduce sqlelf, an innovative tool that empowers users to probe ELF objects through the expressive power of SQL. By modeling ELF objects as relational databases, sqlelf offers the following advantages over conventional methods. Our evaluations demonstrate that sqlelf not only provides more nuanced and comprehensive insights into ELF objects but also significantly reduces the effort and time traditionally required for ELF exploration tasks
- Abstract(参考訳): Executable and Linkable Format (ELF) オブジェクトの探索と理解は、デバッグからリバースエンジニアリングまで、コンピュータシステムにおける様々な重要な活動の基盤となっている。
Readelf、nm、objdumpといった従来のUNIXツールは、長年にわたってコミュニティに確実に役立っている。
しかしながら、ソフトウェアプロジェクトの複雑さと規模が大きくなるにつれて、ELFオブジェクトを調べるためのより直感的で柔軟で強力な方法が求められます。
本稿では,SQLの表現力を通じてELFオブジェクトを探索する革新的なツールであるsqlelfを紹介する。
ELFオブジェクトをリレーショナルデータベースとしてモデル化することで、sqlelfは従来の方法よりも次の利点を提供する。
我々の評価では、sqlelfはELFオブジェクトに対するよりニュアンスで包括的な洞察を提供するだけでなく、従来のALF探索作業に必要な労力や時間を大幅に削減する。
関連論文リスト
- NesTools: A Dataset for Evaluating Nested Tool Learning Abilities of Large Language Models [10.344854970262984]
包括的ネストツール学習評価のギャップを埋めるために、NesToolsを導入します。
NesToolsは、大規模なネストツールコールを構築するための、新しい自動データ生成方法を備えている。
手動によるレビューと改善により、データセットは高品質で、現実世界のシナリオと密接に一致している。
論文 参考訳(メタデータ) (2024-10-15T17:33:43Z) - ELF-Gym: Evaluating Large Language Models Generated Features for Tabular Prediction [33.03433653251314]
大規模言語モデル(LLM)を評価するためのフレームワークであるELF-Gymを提案する。
私たちは、トップパフォーマンスチームによって使用される251の"ゴールド"機能を含む、歴史的なKaggleコンペティションから、新たなデータセットをキュレートしました。
ベストケースのシナリオでは、LLMがゴールデン機能の約56%を意味的にキャプチャできるが、より要求の高い実装レベルでは、オーバーラップは13%に減少する。
論文 参考訳(メタデータ) (2024-10-13T13:59:33Z) - PTD-SQL: Partitioning and Targeted Drilling with LLMs in Text-to-SQL [54.304872649870575]
大規模言語モデル(LLM)は、テキスト・トゥ・センス・タスクの強力なツールとして登場した。
本研究では,クエリグループパーティショニングを用いることで,単一問題に特有の思考プロセスの学習に集中できることを示す。
論文 参考訳(メタデータ) (2024-09-21T09:33:14Z) - UQE: A Query Engine for Unstructured Databases [71.49289088592842]
構造化されていないデータ分析を可能にするために,大規模言語モデルの可能性を検討する。
本稿では,非構造化データ収集からの洞察を直接問合せ,抽出するUniversal Query Engine (UQE)を提案する。
論文 参考訳(メタデータ) (2024-06-23T06:58:55Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
長文言語モデル(LCLM)は、従来、検索システムやデータベースといった外部ツールに依存していたタスクへのアプローチに革命をもたらす可能性がある。
実世界のタスクのベンチマークであるLOFTを導入し、文脈内検索と推論においてLCLMの性能を評価するために設計された数百万のトークンを出力する。
以上の結果からLCLMは,これらのタスクを明示的に訓練したことがないにも関わらず,最先端の検索システムやRAGシステムと競合する驚くべき能力を示した。
論文 参考訳(メタデータ) (2024-06-19T00:28:58Z) - Chain of Tools: Large Language Model is an Automatic Multi-tool Learner [54.992464510992605]
Automatic Tool Chain(ATC)は、大規模言語モデル(LLM)がマルチツールユーザとして機能することを可能にするフレームワークである。
次に,ツールの範囲を拡大するために,ブラックボックス探索法を提案する。
包括的な評価のために、ToolFlowという挑戦的なベンチマークを構築しました。
論文 参考訳(メタデータ) (2024-05-26T11:40:58Z) - Look Before You Leap: Towards Decision-Aware and Generalizable Tool-Usage for Large Language Models [26.28459880766842]
意思決定・汎用ツール・ユース・フレームワーク(DEER)を提案する。
具体的には、まず、自動生成パイプラインを介して、複数の決定ブランチを持つツール使用サンプルを構築します。
提案するDEERは, 各種データセットのベースラインよりも効果的で, 著しく優れる。
論文 参考訳(メタデータ) (2024-02-26T16:11:03Z) - CRAFT: Customizing LLMs by Creating and Retrieving from Specialized
Toolsets [75.64181719386497]
大規模言語モデル(LLM)のためのツール作成・検索フレームワークであるCRAFTを提案する。
タスク用に特別にキュレートされたツールセットを作成し、複雑なタスクを解決する能力を高めるためにこれらのセットからツールを取得するコンポーネントをLLMに装備する。
本手法はフレキシブルに設計されており,既製のLCMを細かな調整なしに未確認領域やモダリティに適応するためのプラグアンドプレイ方式を提供する。
論文 参考訳(メタデータ) (2023-09-29T17:40:26Z) - Text-to-SQL Empowered by Large Language Models: A Benchmark Evaluation [76.76046657162306]
大規模言語モデル(LLM)はテキスト・ツー・タスクの新しいパラダイムとして登場した。
大規模言語モデル(LLM)はテキスト・ツー・タスクの新しいパラダイムとして登場した。
論文 参考訳(メタデータ) (2023-08-29T14:59:54Z) - Querying Large Language Models with SQL [16.383179496709737]
多くのユースケースでは、情報はテキストに格納されるが、構造化データでは利用できない。
事前訓練されたLarge Language Models (LLMs) の台頭に伴い、大量のテキストコーパスから抽出された情報を保存および使用するための効果的なソリューションが現在存在する。
本稿では,従来のデータベースアーキテクチャに基づくプロトタイプであるGaloisについて紹介する。
論文 参考訳(メタデータ) (2023-04-02T06:58:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。