Unified Locational Differential Privacy Framework
- URL: http://arxiv.org/abs/2405.03903v1
- Date: Mon, 6 May 2024 23:33:52 GMT
- Title: Unified Locational Differential Privacy Framework
- Authors: Aman Priyanshu, Yash Maurya, Suriya Ganesh, Vy Tran,
- Abstract summary: We present a unified locational differential privacy (DP) framework to enable private aggregation of various data types over geographical regions.
Results demonstrate the utility of our framework in providing formal DP guarantees while enabling geographical data analysis.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Aggregating statistics over geographical regions is important for many applications, such as analyzing income, election results, and disease spread. However, the sensitive nature of this data necessitates strong privacy protections to safeguard individuals. In this work, we present a unified locational differential privacy (DP) framework to enable private aggregation of various data types, including one-hot encoded, boolean, float, and integer arrays, over geographical regions. Our framework employs local DP mechanisms such as randomized response, the exponential mechanism, and the Gaussian mechanism. We evaluate our approach on four datasets representing significant location data aggregation scenarios. Results demonstrate the utility of our framework in providing formal DP guarantees while enabling geographical data analysis.
Related papers
- EPSpatial: Achieving Efficient and Private Statistical Analytics of Geospatial Data [27.954601303169007]
Geospatial data statistics involve the aggregation and analysis of location data to derive the distribution of clients within geospatial.<n>The need for privacy protection in geospatial data analysis has become paramount due to concerns over the misuse or unauthorized access of client location information.<n>We propose $mathttEPSpatial$, a scheme for accurate, efficient, and private statistical analytics of geospatial data.
arXiv Detail & Related papers (2025-05-19T01:51:30Z) - Differentially Private Random Feature Model [52.468511541184895]
We produce a differentially private random feature model for privacy-preserving kernel machines.
We show that our method preserves privacy and derive a generalization error bound for the method.
arXiv Detail & Related papers (2024-12-06T05:31:08Z) - Privacy Preserving Federated Unsupervised Domain Adaptation with Application to Age Prediction from DNA Methylation Data [2.699900017799093]
We introduce a privacy-preserving framework for unsupervised domain adaptation in high-dimensional settings.
Our framework is the first privacy-preserving solution for high-dimensional domain adaptation in federated environments.
arXiv Detail & Related papers (2024-11-26T10:19:16Z) - PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
We propose a.
Federated Anomaly Detection framework named PeFAD with the increasing privacy concerns.
We conduct extensive evaluations on four real datasets, where PeFAD outperforms existing state-of-the-art baselines by up to 28.74%.
arXiv Detail & Related papers (2024-06-04T13:51:08Z) - Privacy Amplification for the Gaussian Mechanism via Bounded Support [64.86780616066575]
Data-dependent privacy accounting frameworks such as per-instance differential privacy (pDP) and Fisher information loss (FIL) confer fine-grained privacy guarantees for individuals in a fixed training dataset.
We propose simple modifications of the Gaussian mechanism with bounded support, showing that they amplify privacy guarantees under data-dependent accounting.
arXiv Detail & Related papers (2024-03-07T21:22:07Z) - Privacy risk in GeoData: A survey [3.7228963206288967]
We analyse different geomasking techniques proposed to protect individuals' privacy in geodata.
We propose a taxonomy to characterise these techniques across various dimensions.
Our proposed taxonomy serves as a practical resource for data custodians, offering them a means to navigate the extensive array of existing privacy mechanisms.
arXiv Detail & Related papers (2024-02-06T00:55:06Z) - Local Differential Privacy in Graph Neural Networks: a Reconstruction Approach [17.000441871334683]
We propose a learning framework that can provide node privacy at the user level, while incurring low utility loss.
We focus on a decentralized notion of Differential Privacy, namely Local Differential Privacy.
We develop reconstruction methods to approximate features and labels from perturbed data.
arXiv Detail & Related papers (2023-09-15T17:35:51Z) - PS-FedGAN: An Efficient Federated Learning Framework Based on Partially
Shared Generative Adversarial Networks For Data Privacy [56.347786940414935]
Federated Learning (FL) has emerged as an effective learning paradigm for distributed computation.
This work proposes a novel FL framework that requires only partial GAN model sharing.
Named as PS-FedGAN, this new framework enhances the GAN releasing and training mechanism to address heterogeneous data distributions.
arXiv Detail & Related papers (2023-05-19T05:39:40Z) - DP2-Pub: Differentially Private High-Dimensional Data Publication with
Invariant Post Randomization [58.155151571362914]
We propose a differentially private high-dimensional data publication mechanism (DP2-Pub) that runs in two phases.
splitting attributes into several low-dimensional clusters with high intra-cluster cohesion and low inter-cluster coupling helps obtain a reasonable privacy budget.
We also extend our DP2-Pub mechanism to the scenario with a semi-honest server which satisfies local differential privacy.
arXiv Detail & Related papers (2022-08-24T17:52:43Z) - Gromov-Wasserstein Discrepancy with Local Differential Privacy for
Distributed Structural Graphs [7.4398547397969494]
We propose a privacy-preserving framework to analyze the GW discrepancy of node embedding learned locally from graph neural networks.
Our experiments show that, with strong privacy protections guaranteed by the $varilon$-LDP algorithm, the proposed framework not only preserves privacy in graph learning but also presents a noised structural metric under GW distance.
arXiv Detail & Related papers (2022-02-01T23:32:33Z) - Towards Sparse Federated Analytics: Location Heatmaps under Distributed
Differential Privacy with Secure Aggregation [15.569382274788234]
We design a scalable algorithm to privately generate location heatmaps over decentralized data from millions of user devices.
It aims to ensure differential privacy before data becomes visible to a service provider while maintaining high data accuracy and minimizing resource consumption on users' devices.
arXiv Detail & Related papers (2021-11-03T17:19:05Z) - Graph-Homomorphic Perturbations for Private Decentralized Learning [64.26238893241322]
Local exchange of estimates allows inference of data based on private data.
perturbations chosen independently at every agent, resulting in a significant performance loss.
We propose an alternative scheme, which constructs perturbations according to a particular nullspace condition, allowing them to be invisible.
arXiv Detail & Related papers (2020-10-23T10:35:35Z) - Differential Privacy of Hierarchical Census Data: An Optimization
Approach [53.29035917495491]
Census Bureaus are interested in releasing aggregate socio-economic data about a large population without revealing sensitive information about any individual.
Recent events have identified some of the privacy challenges faced by these organizations.
This paper presents a novel differential-privacy mechanism for releasing hierarchical counts of individuals.
arXiv Detail & Related papers (2020-06-28T18:19:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.