NeurDB: An AI-powered Autonomous Data System
- URL: http://arxiv.org/abs/2405.03924v2
- Date: Thu, 4 Jul 2024 08:48:45 GMT
- Title: NeurDB: An AI-powered Autonomous Data System
- Authors: Beng Chin Ooi, Shaofeng Cai, Gang Chen, Yanyan Shen, Kian-Lee Tan, Yuncheng Wu, Xiaokui Xiao, Naili Xing, Cong Yue, Lingze Zeng, Meihui Zhang, Zhanhao Zhao,
- Abstract summary: We present NeurDB, an AI-powered autonomous data system designed to fully embrace AI design in each major system component.
We outline the conceptual and architectural overview of NeurDB, discuss its design choices and key components, and report its current development and future plan.
- Score: 44.14807794638682
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the wake of rapid advancements in artificial intelligence (AI), we stand on the brink of a transformative leap in data systems. The imminent fusion of AI and DB (AIxDB) promises a new generation of data systems, which will relieve the burden on end-users across all industry sectors by featuring AI-enhanced functionalities, such as personalized and automated in-database AI-powered analytics, self-driving capabilities for improved system performance, etc. In this paper, we explore the evolution of data systems with a focus on deepening the fusion of AI and DB. We present NeurDB, an AI-powered autonomous data system designed to fully embrace AI design in each major system component and provide in-database AI-powered analytics. We outline the conceptual and architectural overview of NeurDB, discuss its design choices and key components, and report its current development and future plan.
Related papers
- NeurDB: On the Design and Implementation of an AI-powered Autonomous Database [27.13518136879994]
This paper introduces NeurDB, an AI-powered autonomous database.
NeurDB deepens the fusion of AI and databases with adaptability to data and workload drift.
Empirical evaluations demonstrate that NeurDB substantially outperforms existing solutions in managing AI analytics tasks.
arXiv Detail & Related papers (2024-08-06T07:48:51Z) - Operating System And Artificial Intelligence: A Systematic Review [17.256378758253437]
We explore how AI-driven tools enhance OS performance, security, and efficiency, while OS advancements facilitate more sophisticated AI applications.
We analyze various AI techniques employed to optimize OS functionalities, including memory management, process scheduling, and intrusion detection.
We explore the promising prospects of Intelligent OSes, considering not only how innovative OS architectures will pave the way for groundbreaking opportunities but also how AI will significantly contribute to advancing these next-generation OSs.
arXiv Detail & Related papers (2024-07-19T05:29:34Z) - Generative AI Agent for Next-Generation MIMO Design: Fundamentals, Challenges, and Vision [76.4345564864002]
Next-generation multiple input multiple output (MIMO) is expected to be intelligent and scalable.
We propose the concept of the generative AI agent, which is capable of generating tailored and specialized contents.
We present two compelling case studies that demonstrate the effectiveness of leveraging the generative AI agent for performance analysis.
arXiv Detail & Related papers (2024-04-13T02:39:36Z) - Open-sourced Data Ecosystem in Autonomous Driving: the Present and Future [130.87142103774752]
This review systematically assesses over seventy open-source autonomous driving datasets.
It offers insights into various aspects, such as the principles underlying the creation of high-quality datasets.
It also delves into the scientific and technical challenges that warrant resolution.
arXiv Detail & Related papers (2023-12-06T10:46:53Z) - Data-centric Artificial Intelligence: A Survey [47.24049907785989]
Recently, the role of data in AI has been significantly magnified, giving rise to the emerging concept of data-centric AI.
In this survey, we discuss the necessity of data-centric AI, followed by a holistic view of three general data-centric goals.
We believe this is the first comprehensive survey that provides a global view of a spectrum of tasks across various stages of the data lifecycle.
arXiv Detail & Related papers (2023-03-17T17:44:56Z) - Data-centric AI: Perspectives and Challenges [51.70828802140165]
Data-centric AI (DCAI) advocates a fundamental shift from model advancements to ensuring data quality and reliability.
We bring together three general missions: training data development, inference data development, and data maintenance.
arXiv Detail & Related papers (2023-01-12T05:28:59Z) - Data-Centric Artificial Intelligence [2.5874041837241304]
Data-centric artificial intelligence (data-centric AI) represents an emerging paradigm emphasizing that the systematic design and engineering of data is essential for building effective and efficient AI-based systems.
We define relevant terms, provide key characteristics to contrast the data-centric paradigm to the model-centric one, and introduce a framework for data-centric AI.
arXiv Detail & Related papers (2022-12-22T16:41:03Z) - The Principles of Data-Centric AI (DCAI) [9.211953610948862]
Data-centric AI (DCAI) as an emerging concept brings data, its quality and its dynamism to the forefront.
This article brings together data-centric perspectives and concepts to outline the foundations of DCAI.
arXiv Detail & Related papers (2022-11-26T16:43:40Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
We propose a novel design philosophy called democratized learning (Dem-AI)
Inspired by the societal groups of humans, the specialized groups of learning agents in the proposed Dem-AI system are self-organized in a hierarchical structure to collectively perform learning tasks more efficiently.
We present a reference design as a guideline to realize future Dem-AI systems, inspired by various interdisciplinary fields.
arXiv Detail & Related papers (2020-03-18T08:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.