Human-Centered AI and Autonomy in Robotics: Insights from a Bibliometric Study
- URL: http://arxiv.org/abs/2504.19848v1
- Date: Mon, 28 Apr 2025 14:45:48 GMT
- Title: Human-Centered AI and Autonomy in Robotics: Insights from a Bibliometric Study
- Authors: Simona Casini, Pietro Ducange, Francesco Marcelloni, Lorenzo Pollini,
- Abstract summary: Human-Centered AI (HCAI) aims to balance human control and automation.<n>This paper presents a bibliometric analysis of intelligent autonomous robotic systems using SciMAT and VOSViewer.<n>The findings highlight academic trends, emerging topics, and AI's role in self-adaptive robotic behaviour.
- Score: 3.794859469462058
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The development of autonomous robotic systems offers significant potential for performing complex tasks with precision and consistency. Recent advances in Artificial Intelligence (AI) have enabled more capable intelligent automation systems, addressing increasingly complex challenges. However, this progress raises questions about human roles in such systems. Human-Centered AI (HCAI) aims to balance human control and automation, ensuring performance enhancement while maintaining creativity, mastery, and responsibility. For real-world applications, autonomous robots must balance task performance with reliability, safety, and trustworthiness. Integrating HCAI principles enhances human-robot collaboration and ensures responsible operation. This paper presents a bibliometric analysis of intelligent autonomous robotic systems, utilizing SciMAT and VOSViewer to examine data from the Scopus database. The findings highlight academic trends, emerging topics, and AI's role in self-adaptive robotic behaviour, with an emphasis on HCAI architecture. These insights are then projected onto the IBM MAPE-K architecture, with the goal of identifying how these research results map into actual robotic autonomous systems development efforts for real-world scenarios.
Related papers
- $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
We propose a novel flow matching architecture built on top of a pre-trained vision-language model (VLM) to inherit Internet-scale semantic knowledge.
We evaluate our model in terms of its ability to perform tasks in zero shot after pre-training, follow language instructions from people, and its ability to acquire new skills via fine-tuning.
arXiv Detail & Related papers (2024-10-31T17:22:30Z) - Generative AI and Its Impact on Personalized Intelligent Tutoring Systems [0.0]
Generative AI enables personalized education through dynamic content generation, real-time feedback, and adaptive learning pathways.
Report explores key applications such as automated question generation, customized feedback mechanisms, and interactive dialogue systems.
Future directions highlight the potential advancements in multimodal AI integration, emotional intelligence in tutoring systems, and the ethical implications of AI-driven education.
arXiv Detail & Related papers (2024-10-14T16:01:01Z) - Human-Centered Automation [0.3626013617212666]
The paper argues for the emerging area of Human-Centered Automation (HCA), which prioritizes user needs and preferences in the design and development of automation systems.
The paper discusses the limitations of existing automation approaches, the challenges in integrating AI and RPA, and the benefits of human-centered automation for productivity, innovation, and democratizing access to these technologies.
arXiv Detail & Related papers (2024-05-24T22:12:28Z) - Embodied Neuromorphic Artificial Intelligence for Robotics: Perspectives, Challenges, and Research Development Stack [7.253801704452419]
Recent advances in neuromorphic computing with Spiking Neural Networks (SNN) have demonstrated the potential to enable the embodied intelligence for robotics.
This paper will discuss how we can enable embodied neuromorphic AI for robotic systems through our perspectives.
arXiv Detail & Related papers (2024-04-04T09:52:22Z) - Towards Building AI-CPS with NVIDIA Isaac Sim: An Industrial Benchmark
and Case Study for Robotics Manipulation [18.392301524812645]
As a representative cyber-physical system (CPS), robotic manipulator has been widely adopted in various academic research and industrial processes.
Recent studies in robotics manipulation have started employing artificial intelligence (AI) approaches as controllers to achieve better adaptability and performance.
We propose a public industrial benchmark for robotics manipulation in this paper.
arXiv Detail & Related papers (2023-07-31T18:21:45Z) - Stabilizing Contrastive RL: Techniques for Robotic Goal Reaching from
Offline Data [101.43350024175157]
Self-supervised learning has the potential to decrease the amount of human annotation and engineering effort required to learn control strategies.
Our work builds on prior work showing that the reinforcement learning (RL) itself can be cast as a self-supervised problem.
We demonstrate that a self-supervised RL algorithm based on contrastive learning can solve real-world, image-based robotic manipulation tasks.
arXiv Detail & Related papers (2023-06-06T01:36:56Z) - World Models and Predictive Coding for Cognitive and Developmental
Robotics: Frontiers and Challenges [51.92834011423463]
We focus on the two concepts of world models and predictive coding.
In neuroscience, predictive coding proposes that the brain continuously predicts its inputs and adapts to model its own dynamics and control behavior in its environment.
arXiv Detail & Related papers (2023-01-14T06:38:14Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
We introduce highlighted robustness challenges in the AI lifecycle and motivate AI maintenance by making analogies to car maintenance.
We propose an AI model inspection framework to detect and mitigate robustness risks.
Our proposal for AI maintenance facilitates robustness assessment, status tracking, risk scanning, model hardening, and regulation throughout the AI lifecycle.
arXiv Detail & Related papers (2023-01-08T15:02:38Z) - Proceedings of the Robust Artificial Intelligence System Assurance
(RAISA) Workshop 2022 [0.0]
The RAISA workshop will focus on research, development and application of robust artificial intelligence (AI) and machine learning (ML) systems.
Rather than studying robustness with respect to particular ML algorithms, our approach will be to explore robustness assurance at the system architecture level.
arXiv Detail & Related papers (2022-02-10T01:15:50Z) - On the Philosophical, Cognitive and Mathematical Foundations of
Symbiotic Autonomous Systems (SAS) [87.3520234553785]
Symbiotic Autonomous Systems (SAS) are advanced intelligent and cognitive systems exhibiting autonomous collective intelligence.
This work presents a theoretical framework of SAS underpinned by the latest advances in intelligence, cognition, computer, and system sciences.
arXiv Detail & Related papers (2021-02-11T05:44:25Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
We propose a novel design philosophy called democratized learning (Dem-AI)
Inspired by the societal groups of humans, the specialized groups of learning agents in the proposed Dem-AI system are self-organized in a hierarchical structure to collectively perform learning tasks more efficiently.
We present a reference design as a guideline to realize future Dem-AI systems, inspired by various interdisciplinary fields.
arXiv Detail & Related papers (2020-03-18T08:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.