Collaborative Intelligence in Sequential Experiments: A Human-in-the-Loop Framework for Drug Discovery
- URL: http://arxiv.org/abs/2405.03942v1
- Date: Tue, 7 May 2024 02:03:07 GMT
- Title: Collaborative Intelligence in Sequential Experiments: A Human-in-the-Loop Framework for Drug Discovery
- Authors: Jinghai He, Cheng Hua, Yingfei Wang, Zeyu Zheng,
- Abstract summary: We introduce a human-in-the-loop framework for sequential experiments in drug discovery.
The proposed algorithm processes experimental data to recommend both promising molecules and those that could improve its performance to human experts.
Human experts retain the final decision-making authority based on these recommendations and their domain expertise.
- Score: 13.438499600701578
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Drug discovery is a complex process that involves sequentially screening and examining a vast array of molecules to identify those with the target properties. This process, also referred to as sequential experimentation, faces challenges due to the vast search space, the rarity of target molecules, and constraints imposed by limited data and experimental budgets. To address these challenges, we introduce a human-in-the-loop framework for sequential experiments in drug discovery. This collaborative approach combines human expert knowledge with deep learning algorithms, enhancing the discovery of target molecules within a specified experimental budget. The proposed algorithm processes experimental data to recommend both promising molecules and those that could improve its performance to human experts. Human experts retain the final decision-making authority based on these recommendations and their domain expertise, including the ability to override algorithmic recommendations. We applied our method to drug discovery tasks using real-world data and found that it consistently outperforms all baseline methods, including those which rely solely on human or algorithmic input. This demonstrates the complementarity between human experts and the algorithm. Our results provide key insights into the levels of humans' domain knowledge, the importance of meta-knowledge, and effective work delegation strategies. Our findings suggest that such a framework can significantly accelerate the development of new vaccines and drugs by leveraging the best of both human and artificial intelligence.
Related papers
- User-centric evaluation of explainability of AI with and for humans: a comprehensive empirical study [5.775094401949666]
This study is located in the Human-Centered Artificial Intelligence (HCAI)
It focuses on the results of a user-centered assessment of commonly used eXplainable Artificial Intelligence (XAI) algorithms.
arXiv Detail & Related papers (2024-10-21T12:32:39Z) - Integrating Expert Judgment and Algorithmic Decision Making: An Indistinguishability Framework [12.967730957018688]
We introduce a novel framework for human-AI collaboration in prediction and decision tasks.
Our approach leverages human judgment to distinguish inputs which are algorithmically indistinguishable, or "look the same" to any feasible predictive algorithm.
arXiv Detail & Related papers (2024-10-11T13:03:53Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
This paper presents meticulously curated AIready datasets covering multi-modal data (e.g., drug molecule, disease code, text, categorical/numerical features) and 8 crucial prediction challenges in clinical trial design.
We provide basic validation methods for each task to ensure the datasets' usability and reliability.
We anticipate that the availability of such open-access datasets will catalyze the development of advanced AI approaches for clinical trial design.
arXiv Detail & Related papers (2024-06-30T09:13:10Z) - Collaborative Knowledge Infusion for Low-resource Stance Detection [83.88515573352795]
Target-related knowledge is often needed to assist stance detection models.
We propose a collaborative knowledge infusion approach for low-resource stance detection tasks.
arXiv Detail & Related papers (2024-03-28T08:32:14Z) - Human Expertise in Algorithmic Prediction [16.104330706951004]
We introduce a novel framework for incorporating human expertise into algorithmic predictions.
Our approach leverages human judgment to distinguish inputs which are algorithmically indistinguishable, or "look the same" to predictive algorithms.
arXiv Detail & Related papers (2024-02-01T17:23:54Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - Towards Unified AI Drug Discovery with Multiple Knowledge Modalities [5.232382666884214]
We propose KEDD, a unified, end-to-end, and multimodal deep learning framework.
It optimally incorporates both structured and unstructured knowledge for vast AI drug discovery tasks.
Our framework achieves a deeper understanding of molecule entities, brings significant improvements over state-of-the-art methods.
arXiv Detail & Related papers (2023-04-17T13:15:16Z) - BO-Muse: A human expert and AI teaming framework for accelerated
experimental design [58.61002520273518]
Our algorithm lets the human expert take the lead in the experimental process.
We show that our algorithm converges sub-linearly, at a rate faster than the AI or human alone.
arXiv Detail & Related papers (2023-03-03T02:56:05Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery.
wet experiments remain the most reliable method, but they are time-consuming and resource-intensive.
Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue.
We present the SSM-DTA framework, which incorporates three simple yet highly effective strategies.
arXiv Detail & Related papers (2022-06-20T14:53:25Z) - HINT: Hierarchical Interaction Network for Trial Outcome Prediction
Leveraging Web Data [56.53715632642495]
Clinical trials face uncertain outcomes due to issues with efficacy, safety, or problems with patient recruitment.
In this paper, we propose Hierarchical INteraction Network (HINT) for more general, clinical trial outcome predictions.
arXiv Detail & Related papers (2021-02-08T15:09:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.