Towards Unified AI Drug Discovery with Multiple Knowledge Modalities
- URL: http://arxiv.org/abs/2305.01523v2
- Date: Sat, 14 Oct 2023 05:49:33 GMT
- Title: Towards Unified AI Drug Discovery with Multiple Knowledge Modalities
- Authors: Yizhen Luo, Xing Yi Liu, Kai Yang, Kui Huang, Massimo Hong, Jiahuan
Zhang, Yushuai Wu, Zaiqing Nie
- Abstract summary: We propose KEDD, a unified, end-to-end, and multimodal deep learning framework.
It optimally incorporates both structured and unstructured knowledge for vast AI drug discovery tasks.
Our framework achieves a deeper understanding of molecule entities, brings significant improvements over state-of-the-art methods.
- Score: 5.232382666884214
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, AI models that mine intrinsic patterns from molecular
structures and protein sequences have shown promise in accelerating drug
discovery. However, these methods partly lag behind real-world pharmaceutical
approaches of human experts that additionally grasp structured knowledge from
knowledge bases and unstructured knowledge from biomedical literature. To
bridge this gap, we propose KEDD, a unified, end-to-end, and multimodal deep
learning framework that optimally incorporates both structured and unstructured
knowledge for vast AI drug discovery tasks. The framework first extracts
underlying characteristics from heterogeneous inputs, and then applies
multimodal fusion for accurate prediction. To mitigate the problem of missing
modalities, we leverage multi-head sparse attention and a modality masking
mechanism to extract relevant information robustly. Benefiting from integrated
knowledge, our framework achieves a deeper understanding of molecule entities,
brings significant improvements over state-of-the-art methods on a wide range
of tasks and benchmarks, and reveals its promising potential in assisting
real-world drug discovery.
Related papers
- Causal Representation Learning from Multimodal Biological Observations [57.00712157758845]
We aim to develop flexible identification conditions for multimodal data.
We establish identifiability guarantees for each latent component, extending the subspace identification results from prior work.
Our key theoretical ingredient is the structural sparsity of the causal connections among distinct modalities.
arXiv Detail & Related papers (2024-11-10T16:40:27Z) - Explainable AI Methods for Multi-Omics Analysis: A Survey [3.885941688264509]
Multi-omics refers to the integrative analysis of data derived from multiple 'omes'
Deep learning methods are increasingly utilized to integrate multi-omics data, offering insights into molecular interactions and enhancing research into complex diseases.
These models, with their numerous interconnected layers and nonlinear relationships, often function as black boxes, lacking transparency in decision-making processes.
This review explores how xAI can improve the interpretability of deep learning models in multi-omics research, highlighting its potential to provide clinicians with clear insights.
arXiv Detail & Related papers (2024-10-15T05:01:17Z) - GIVE: Structured Reasoning with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE) is a novel reasoning framework that integrates the parametric and non-parametric memories.
Our method facilitates a more logical and step-wise reasoning approach akin to experts' problem-solving, rather than gold answer retrieval.
arXiv Detail & Related papers (2024-10-11T03:05:06Z) - Large Language Models in Drug Discovery and Development: From Disease Mechanisms to Clinical Trials [49.19897427783105]
The integration of Large Language Models (LLMs) into the drug discovery and development field marks a significant paradigm shift.
We investigate how these advanced computational models can uncover target-disease linkage, interpret complex biomedical data, enhance drug molecule design, predict drug efficacy and safety profiles, and facilitate clinical trial processes.
arXiv Detail & Related papers (2024-09-06T02:03:38Z) - A Systematic Review of Intermediate Fusion in Multimodal Deep Learning for Biomedical Applications [0.7831774233149619]
This systematic review aims to analyze and formalize current intermediate fusion methods in biomedical applications.
We introduce a structured notation to enhance the understanding and application of these methods beyond the biomedical domain.
Our findings are intended to support researchers, healthcare professionals, and the broader deep learning community in developing more sophisticated and insightful multimodal models.
arXiv Detail & Related papers (2024-08-02T11:48:04Z) - Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
We develop an approach that uses lightweight adapter modules to inject structured biomedical knowledge into pre-trained language models.
We use two large KGs, the biomedical knowledge system UMLS and the novel biochemical OntoChem, with two prominent biomedical PLMs, PubMedBERT and BioLinkBERT.
We show that our methodology leads to performance improvements in several instances while keeping requirements in computing power low.
arXiv Detail & Related papers (2023-12-21T14:26:57Z) - InstructMol: Multi-Modal Integration for Building a Versatile and
Reliable Molecular Assistant in Drug Discovery [19.870192393785043]
Large Language Models (LLMs) offer promise in reshaping interactions with complex molecular data.
Our novel contribution, InstructMol, effectively aligns molecular structures with natural language via an instruction-tuning approach.
InstructMol showcases substantial performance improvements in drug discovery-related molecular tasks.
arXiv Detail & Related papers (2023-11-27T16:47:51Z) - Knowledge-augmented Graph Machine Learning for Drug Discovery: A Survey [6.288056740658763]
Graph Machine Learning (GML) has gained considerable attention for its exceptional ability to model graph-structured biomedical data.
Recent studies have proposed integrating external biomedical knowledge into the GML pipeline to realise more precise and interpretable drug discovery.
arXiv Detail & Related papers (2023-02-16T12:38:01Z) - Structure-based drug discovery with deep learning [0.0]
Artificial intelligence (AI) in the form of deep learning bears promise for drug discovery and chemical biology.
This review summarizes the most prominent algorithmic concepts in structure-based deep learning for drug discovery.
arXiv Detail & Related papers (2022-12-26T20:52:26Z) - Discovering Drug-Target Interaction Knowledge from Biomedical Literature [107.98712673387031]
The Interaction between Drugs and Targets (DTI) in human body plays a crucial role in biomedical science and applications.
As millions of papers come out every year in the biomedical domain, automatically discovering DTI knowledge from literature becomes an urgent demand in the industry.
We explore the first end-to-end solution for this task by using generative approaches.
We regard the DTI triplets as a sequence and use a Transformer-based model to directly generate them without using the detailed annotations of entities and relations.
arXiv Detail & Related papers (2021-09-27T17:00:14Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
We review the existing research regarding the use of machine learning in nano-scale biomedical engineering.
The main challenges that can be formulated as ML problems are classified into the three main categories.
For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations.
arXiv Detail & Related papers (2020-08-05T15:45:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.