論文の概要: Predictive Modeling with Temporal Graphical Representation on Electronic Health Records
- arxiv url: http://arxiv.org/abs/2405.03943v1
- Date: Tue, 7 May 2024 02:05:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 15:38:26.387093
- Title: Predictive Modeling with Temporal Graphical Representation on Electronic Health Records
- Title(参考訳): 電子カルテ上での時間図表表現による予測モデル
- Authors: Jiayuan Chen, Changchang Yin, Yuanlong Wang, Ping Zhang,
- Abstract要約: 患者のERHの効果的な表現は、歴史的訪問と医療イベントの時間的関係の両方を包含すべきである。
我々は,患者のERHを新しい時間的異種グラフとしてモデル化する。
医療イベントノードから訪問ノードへの構造化情報を伝達し、タイムアウェアな訪問ノードを使用して患者の健康状態の変化をキャプチャする。
- 参考スコア(独自算出の注目度): 8.996666837088311
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning-based predictive models, leveraging Electronic Health Records (EHR), are receiving increasing attention in healthcare. An effective representation of a patient's EHR should hierarchically encompass both the temporal relationships between historical visits and medical events, and the inherent structural information within these elements. Existing patient representation methods can be roughly categorized into sequential representation and graphical representation. The sequential representation methods focus only on the temporal relationships among longitudinal visits. On the other hand, the graphical representation approaches, while adept at extracting the graph-structured relationships between various medical events, fall short in effectively integrate temporal information. To capture both types of information, we model a patient's EHR as a novel temporal heterogeneous graph. This graph includes historical visits nodes and medical events nodes. It propagates structured information from medical event nodes to visit nodes and utilizes time-aware visit nodes to capture changes in the patient's health status. Furthermore, we introduce a novel temporal graph transformer (TRANS) that integrates temporal edge features, global positional encoding, and local structural encoding into heterogeneous graph convolution, capturing both temporal and structural information. We validate the effectiveness of TRANS through extensive experiments on three real-world datasets. The results show that our proposed approach achieves state-of-the-art performance.
- Abstract(参考訳): EHR(Electronic Health Records)を活用したディープラーニングベースの予測モデルは、医療において注目を集めている。
患者のERHの効果的な表現は、歴史的訪問と医療イベントの時間的関係と、これらの要素の中で固有の構造情報の両方を階層的に包含するべきである。
既存の患者表現法は、大まかに、シーケンシャルな表現とグラフィカルな表現に分類することができる。
シーケンシャルな表現法は, 来訪者間の時間的関係にのみ焦点をあてる。
一方、グラフィカルな表現は、様々な医療イベント間のグラフ構造的関係の抽出に適しているが、時間的情報を効果的に統合するには不十分である。
両タイプの情報を収集するために,患者のERHを新しい時間的異種グラフとしてモデル化する。
このグラフには、過去の訪問ノードと医療イベントノードが含まれている。
医療イベントノードから訪問ノードへの構造化情報を伝達し、タイムアウェアな訪問ノードを使用して患者の健康状態の変化をキャプチャする。
さらに、時間的エッジ特徴、大域的位置エンコーディング、局所的構造エンコーディングをヘテロジニアスグラフ畳み込みに統合し、時間的情報と構造的情報の両方をキャプチャする新しい時間的グラフトランスフォーマー(TRANS)を導入する。
実世界の3つのデータセットに対する広範囲な実験を通してTransの有効性を検証する。
その結果,提案手法は最先端の性能を達成できることが示唆された。
関連論文リスト
- CTRL: Continuous-Time Representation Learning on Temporal Heterogeneous Information Network [32.42051167404171]
時間HINを用いた連続時間表現学習モデルを提案する。
我々は、高次ネットワーク構造の進化を捉えるために、将来の事象(サブグラフ)予測タスクでモデルを訓練する。
その結果,本モデルは性能を著しく向上し,様々な最先端手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-05-11T03:39:22Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphsは階層的時間グラフとして動的相互作用を特徴付ける新しいアプローチである。
提案手法は,コンパクトなグラフベース表現を用いて相互作用をモデル化し,多種多様な時間スケールでの適応推論を可能にする。
我々は,サッカーシミュレータ,抵抗ゲーム,MOMA人間活動データセットなど,複雑でダイナミックなエージェントインタラクションを持つ複数のデータセット上でTimeGraphsを評価する。
論文 参考訳(メタデータ) (2024-01-06T06:26:49Z) - Encoding Surgical Videos as Latent Spatiotemporal Graphs for Object and
Anatomy-Driven Reasoning [2.9724186623561435]
時間とともに構成解剖学的構造やツールの観点から,手術ビデオを表すために潜時グラフを用いた。
本稿では,事前知識の時間的コヒーレンスを取り入れたグラフ編集モジュールを提案する。
論文 参考訳(メタデータ) (2023-12-11T20:42:27Z) - LABRAD-OR: Lightweight Memory Scene Graphs for Accurate Bimodal
Reasoning in Dynamic Operating Rooms [39.11134330259464]
手術室(OR)の全体モデリングは難しいが必須課題である。
本稿では,過去の時間ステップのシーングラフが時間的表現として機能し,現在の予測を導くメモリシーングラフを紹介する。
我々は、私たちの軽量メモリシーングラフの時間情報をポイントクラウドや画像からの視覚情報とインテリジェントに融合するエンドツーエンドアーキテクチャを設計する。
論文 参考訳(メタデータ) (2023-03-23T14:26:16Z) - Dynamic Graph Enhanced Contrastive Learning for Chest X-ray Report
Generation [92.73584302508907]
コントラスト学習を用いた医療レポート作成を支援するために,動的構造とノードを持つ知識グラフを提案する。
詳しくは、グラフの基本構造は一般知識から事前構築される。
各イメージ機能は、レポート生成のためにデコーダモジュールに入力する前に、独自の更新グラフに統合される。
論文 参考訳(メタデータ) (2023-03-18T03:53:43Z) - Self-Supervised Temporal Graph learning with Temporal and Structural Intensity Alignment [53.72873672076391]
時間グラフ学習は、動的情報を用いたグラフベースのタスクのための高品質な表現を生成することを目的としている。
本稿では,時間的および構造的情報の両方を抽出する時間的グラフ学習のためのS2Tという自己教師型手法を提案する。
S2Tは、いくつかのデータセットにおける最先端の競合と比較して、少なくとも10.13%のパフォーマンス改善を実現している。
論文 参考訳(メタデータ) (2023-02-15T06:36:04Z) - Self-supervised Representation Learning on Electronic Health Records
with Graph Kernel Infomax [4.133378723518227]
EHRのグラフィカル表現に対する自己教師付きグラフカーネル学習手法であるGraph Kernel Infomaxを提案する。
最先端とは違って、グラフ構造を変更して拡張ビューを構築することはできません。
我々のアプローチは、最先端を超える臨床下流課題にパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2022-09-01T16:15:08Z) - Graph-in-Graph (GiG): Learning interpretable latent graphs in
non-Euclidean domain for biological and healthcare applications [52.65389473899139]
グラフは、医療領域において、非ユークリッドな非ユークリッドデータをユビキタスに表現し、分析するための強力なツールである。
近年の研究では、入力データサンプル間の関係を考慮すると、下流タスクに正の正の正則化効果があることが示されている。
タンパク質分類と脳イメージングのためのニューラルネットワークアーキテクチャであるGraph-in-Graph(GiG)を提案する。
論文 参考訳(メタデータ) (2022-04-01T10:01:37Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
本稿では,患者の医療旅行におけるコンテキスト依存と時間的関係を捉える,新たな自己注意機構を提案する。
エンド・ツー・エンドの双方向時間エンコーダネットワーク(BiteNet)が患者の旅路の表現を学習する。
実世界のEHRデータセットを用いた2つの教師付き予測と2つの教師なしクラスタリングタスクにおける手法の有効性を評価した。
論文 参考訳(メタデータ) (2020-09-24T00:42:36Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
コンコルビンド病は、個人によって異なる複雑な時間的パターンを通じて発生し進行する。
電子的な健康記録では、患者が持つ異なる疾患を観察できるが、それぞれの共死状態の時間的関係を推測できるだけである。
我々は「ダイナミック・コオービディティ・ネットワーク」をモデル化するための深層拡散プロセスを開発する。
論文 参考訳(メタデータ) (2020-01-08T15:47:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。