Contextualization with SPLADE for High Recall Retrieval
- URL: http://arxiv.org/abs/2405.03972v1
- Date: Tue, 07 May 2024 03:05:37 GMT
- Title: Contextualization with SPLADE for High Recall Retrieval
- Authors: Eugene Yang,
- Abstract summary: High Recall Retrieval (HRR) is a search problem that optimize the cost of retrieving most relevant documents in a given collection.
In this work, we leverage SPLADE, an efficient retrieval model that transforms documents into contextualized sparse vectors.
It reduces 10% and 18% of the review cost in two HRR evaluation collections under a one-phase review workflow with a target recall of 80%.
- Score: 5.973857434357868
- License:
- Abstract: High Recall Retrieval (HRR), such as eDiscovery and medical systematic review, is a search problem that optimizes the cost of retrieving most relevant documents in a given collection. Iterative approaches, such as iterative relevance feedback and uncertainty sampling, are shown to be effective under various operational scenarios. Despite neural models demonstrating success in other text-related tasks, linear models such as logistic regression, in general, are still more effective and efficient in HRR since the model is trained and retrieves documents from the same fixed collection. In this work, we leverage SPLADE, an efficient retrieval model that transforms documents into contextualized sparse vectors, for HRR. Our approach combines the best of both worlds, leveraging both the contextualization from pretrained language models and the efficiency of linear models. It reduces 10% and 18% of the review cost in two HRR evaluation collections under a one-phase review workflow with a target recall of 80%. The experiment is implemented with TARexp and is available at https://github.com/eugene-yang/LSR-for-TAR.
Related papers
- MaFeRw: Query Rewriting with Multi-Aspect Feedbacks for Retrieval-Augmented Large Language Models [34.39053202801489]
In a real-world RAG system, the current query often involves spoken ellipses and ambiguous references from dialogue contexts.
We propose a novel query rewriting method MaFeRw, which improves RAG performance by integrating multi-aspect feedback from both the retrieval process and generated results.
Experimental results on two conversational RAG datasets demonstrate that MaFeRw achieves superior generation metrics and more stable training compared to baselines.
arXiv Detail & Related papers (2024-08-30T07:57:30Z) - Evaluating Retrieval Quality in Retrieval-Augmented Generation [21.115495457454365]
Traditional end-to-end evaluation methods are computationally expensive.
We propose eRAG, where each document in the retrieval list is individually utilized by the large language model within the RAG system.
eRAG offers significant computational advantages, improving runtime and consuming up to 50 times less GPU memory than end-to-end evaluation.
arXiv Detail & Related papers (2024-04-21T21:22:28Z) - Multimodal Learned Sparse Retrieval with Probabilistic Expansion Control [66.78146440275093]
Learned retrieval (LSR) is a family of neural methods that encode queries and documents into sparse lexical vectors.
We explore the application of LSR to the multi-modal domain, with a focus on text-image retrieval.
Current approaches like LexLIP and STAIR require complex multi-step training on massive datasets.
Our proposed approach efficiently transforms dense vectors from a frozen dense model into sparse lexical vectors.
arXiv Detail & Related papers (2024-02-27T14:21:56Z) - List-aware Reranking-Truncation Joint Model for Search and
Retrieval-augmented Generation [80.12531449946655]
We propose a Reranking-Truncation joint model (GenRT) that can perform the two tasks concurrently.
GenRT integrates reranking and truncation via generative paradigm based on encoder-decoder architecture.
Our method achieves SOTA performance on both reranking and truncation tasks for web search and retrieval-augmented LLMs.
arXiv Detail & Related papers (2024-02-05T06:52:53Z) - GAR-meets-RAG Paradigm for Zero-Shot Information Retrieval [16.369071865207808]
We propose a novel GAR-meets-RAG recurrence formulation that overcomes the challenges of existing paradigms.
A key design principle is that the rewrite-retrieval stages improve the recall of the system and a final re-ranking stage improves the precision.
Our method establishes a new state-of-the-art in the BEIR benchmark, outperforming previous best results in Recall@100 and nDCG@10 metrics on 6 out of 8 datasets.
arXiv Detail & Related papers (2023-10-31T03:52:08Z) - SPRINT: A Unified Toolkit for Evaluating and Demystifying Zero-shot
Neural Sparse Retrieval [92.27387459751309]
We provide SPRINT, a unified Python toolkit for evaluating neural sparse retrieval.
We establish strong and reproducible zero-shot sparse retrieval baselines across the well-acknowledged benchmark, BEIR.
We show that SPLADEv2 produces sparse representations with a majority of tokens outside of the original query and document.
arXiv Detail & Related papers (2023-07-19T22:48:02Z) - Zero-Shot Listwise Document Reranking with a Large Language Model [58.64141622176841]
We propose Listwise Reranker with a Large Language Model (LRL), which achieves strong reranking effectiveness without using any task-specific training data.
Experiments on three TREC web search datasets demonstrate that LRL not only outperforms zero-shot pointwise methods when reranking first-stage retrieval results, but can also act as a final-stage reranker.
arXiv Detail & Related papers (2023-05-03T14:45:34Z) - DORE: Document Ordered Relation Extraction based on Generative Framework [56.537386636819626]
This paper investigates the root cause of the underwhelming performance of the existing generative DocRE models.
We propose to generate a symbolic and ordered sequence from the relation matrix which is deterministic and easier for model to learn.
Experimental results on four datasets show that our proposed method can improve the performance of the generative DocRE models.
arXiv Detail & Related papers (2022-10-28T11:18:10Z) - Incorporating Relevance Feedback for Information-Seeking Retrieval using
Few-Shot Document Re-Ranking [56.80065604034095]
We introduce a kNN approach that re-ranks documents based on their similarity with the query and the documents the user considers relevant.
To evaluate our different integration strategies, we transform four existing information retrieval datasets into the relevance feedback scenario.
arXiv Detail & Related papers (2022-10-19T16:19:37Z) - Goldilocks: Just-Right Tuning of BERT for Technology-Assisted Review [14.689883695115519]
Technology-assisted review (TAR) refers to iterative active learning for document review in high recall retrieval tasks.
Transformer-based models with supervised tuning have been found to improve effectiveness on many text classification tasks.
We show that just-right language model fine-tuning on the task collection before starting active learning is critical.
arXiv Detail & Related papers (2021-05-03T17:41:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.