Explainability-Informed Targeted Malware Misclassification
- URL: http://arxiv.org/abs/2405.04010v1
- Date: Tue, 7 May 2024 04:59:19 GMT
- Title: Explainability-Informed Targeted Malware Misclassification
- Authors: Quincy Card, Kshitiz Aryal, Maanak Gupta,
- Abstract summary: Machine learning models for malware classification into categories have shown promising results.
Deep neural networks have shown vulnerabilities against intentionally crafted adversarial attacks.
Our paper explores such adversarial vulnerabilities of neural network based malware classification system.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In recent years, there has been a surge in malware attacks across critical infrastructures, requiring further research and development of appropriate response and remediation strategies in malware detection and classification. Several works have used machine learning models for malware classification into categories, and deep neural networks have shown promising results. However, these models have shown its vulnerabilities against intentionally crafted adversarial attacks, which yields misclassification of a malicious file. Our paper explores such adversarial vulnerabilities of neural network based malware classification system in the dynamic and online analysis environments. To evaluate our approach, we trained Feed Forward Neural Networks (FFNN) to classify malware categories based on features obtained from dynamic and online analysis environments. We use the state-of-the-art method, SHapley Additive exPlanations (SHAP), for the feature attribution for malware classification, to inform the adversarial attackers about the features with significant importance on classification decision. Using the explainability-informed features, we perform targeted misclassification adversarial white-box evasion attacks using the Fast Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD) attacks against the trained classifier. Our results demonstrated high evasion rate for some instances of attacks, showing a clear vulnerability of a malware classifier for such attacks. We offer recommendations for a balanced approach and a benchmark for much-needed future research into evasion attacks against malware classifiers, and develop more robust and trustworthy solutions.
Related papers
- MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
We propose MASKDROID, a powerful detector with a strong discriminative ability to identify malware.
We introduce a masking mechanism into the Graph Neural Network based framework, forcing MASKDROID to recover the whole input graph.
This strategy enables the model to understand the malicious semantics and learn more stable representations, enhancing its robustness against adversarial attacks.
arXiv Detail & Related papers (2024-09-29T07:22:47Z) - Model-agnostic clean-label backdoor mitigation in cybersecurity environments [6.857489153636145]
Recent research has surfaced a series of insidious training-time attacks that inject backdoors in models designed for security classification tasks.
We propose new techniques that leverage insights in cybersecurity threat models to effectively mitigate these clean-label poisoning attacks.
arXiv Detail & Related papers (2024-07-11T03:25:40Z) - Explainable Deep Learning Models for Dynamic and Online Malware Classification [0.856335408411906]
Our paper aims to delve into explainable malware classification across various execution environments.
We train Feed Forward Neural Networks (FFNN) and Convolutional Neural Networks (CNN) to classify malware based on features obtained from dynamic and online analysis environments.
We perform a detailed evaluation of the calculated global and local explanations from the experiments, discuss limitations and, ultimately, offer recommendations for achieving a balanced approach.
arXiv Detail & Related papers (2024-04-18T19:07:51Z) - Case Study: Neural Network Malware Detection Verification for Feature and Image Datasets [5.198311758274061]
We present a novel verification domain that will help to ensure tangible safeguards against adversaries.
We describe malware classification and two types of common malware datasets.
We outline the challenges and future considerations necessary for the improvement and refinement of the verification of malware classification.
arXiv Detail & Related papers (2024-04-08T17:37:22Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuard is the first framework for fault type and zone classification resilient to adversarial attacks.
We propose a low-complexity fault prediction model and an online adversarial training technique to enhance robustness.
Our model outclasses the state-of-the-art for resilient fault prediction benchmarking, with an accuracy of up to 0.958.
arXiv Detail & Related papers (2024-03-26T08:51:23Z) - A Malware Classification Survey on Adversarial Attacks and Defences [0.0]
Deep learning models are effective at detecting malware, but are vulnerable to adversarial attacks.
Attacks like this can create malicious files that are resistant to detection, creating a significant cybersecurity risk.
Recent research has seen the development of several adversarial attack and response approaches.
arXiv Detail & Related papers (2023-12-15T09:25:48Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
We develop a certified defense, DRSM (De-Randomized Smoothed MalConv), by redesigning the de-randomized smoothing technique for the domain of malware detection.
Specifically, we propose a window ablation scheme to provably limit the impact of adversarial bytes while maximally preserving local structures of the executables.
We are the first to offer certified robustness in the realm of static detection of malware executables.
arXiv Detail & Related papers (2023-03-20T17:25:22Z) - Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A
Contemporary Survey [114.17568992164303]
Adrial attacks and defenses in machine learning and deep neural network have been gaining significant attention.
This survey provides a comprehensive overview of the recent advancements in the field of adversarial attack and defense techniques.
New avenues of attack are also explored, including search-based, decision-based, drop-based, and physical-world attacks.
arXiv Detail & Related papers (2023-03-11T04:19:31Z) - Binary Black-box Evasion Attacks Against Deep Learning-based Static
Malware Detectors with Adversarial Byte-Level Language Model [11.701290164823142]
MalRNN is a novel approach to automatically generate evasive malware variants without restrictions.
MalRNN effectively evades three recent deep learning-based malware detectors and outperforms current benchmark methods.
arXiv Detail & Related papers (2020-12-14T22:54:53Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
We show how an attacker can launch a sophisticated and efficient poisoning attack targeting the dataset used to train a malware classifier.
As opposed to other poisoning attacks in the malware detection domain, our attack does not focus on malware families but rather on specific malware instances that contain an implanted trigger.
We propose a comprehensive detection approach that could serve as a future sophisticated defense against this newly discovered severe threat.
arXiv Detail & Related papers (2020-10-30T15:27:44Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
adversarial EXEmples can bypass machine learning-based detection by perturbing relatively few input bytes.
We develop a unifying framework that does not only encompass and generalize previous attacks against machine-learning models, but also includes three novel attacks.
These attacks, named Full DOS, Extend and Shift, inject the adversarial payload by respectively manipulating the DOS header, extending it, and shifting the content of the first section.
arXiv Detail & Related papers (2020-08-17T07:16:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.