Case Study: Neural Network Malware Detection Verification for Feature and Image Datasets
- URL: http://arxiv.org/abs/2404.05703v1
- Date: Mon, 8 Apr 2024 17:37:22 GMT
- Title: Case Study: Neural Network Malware Detection Verification for Feature and Image Datasets
- Authors: Preston K. Robinette, Diego Manzanas Lopez, Serena Serbinowska, Kevin Leach, Taylor T. Johnson,
- Abstract summary: We present a novel verification domain that will help to ensure tangible safeguards against adversaries.
We describe malware classification and two types of common malware datasets.
We outline the challenges and future considerations necessary for the improvement and refinement of the verification of malware classification.
- Score: 5.198311758274061
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Malware, or software designed with harmful intent, is an ever-evolving threat that can have drastic effects on both individuals and institutions. Neural network malware classification systems are key tools for combating these threats but are vulnerable to adversarial machine learning attacks. These attacks perturb input data to cause misclassification, bypassing protective systems. Existing defenses often rely on enhancing the training process, thereby increasing the model's robustness to these perturbations, which is quantified using verification. While training improvements are necessary, we propose focusing on the verification process used to evaluate improvements to training. As such, we present a case study that evaluates a novel verification domain that will help to ensure tangible safeguards against adversaries and provide a more reliable means of evaluating the robustness and effectiveness of anti-malware systems. To do so, we describe malware classification and two types of common malware datasets (feature and image datasets), demonstrate the certified robustness accuracy of malware classifiers using the Neural Network Verification (NNV) and Neural Network Enumeration (nnenum) tools, and outline the challenges and future considerations necessary for the improvement and refinement of the verification of malware classification. By evaluating this novel domain as a case study, we hope to increase its visibility, encourage further research and scrutiny, and ultimately enhance the resilience of digital systems against malicious attacks.
Related papers
- Predicting Vulnerability to Malware Using Machine Learning Models: A Study on Microsoft Windows Machines [0.0]
This study addresses the need for effective malware detection strategies by leveraging Machine Learning (ML) techniques.
Our research aims to develop an advanced ML model that accurately predicts malware vulnerabilities based on the specific conditions of individual machines.
arXiv Detail & Related papers (2025-01-05T10:04:58Z) - Unlearn and Burn: Adversarial Machine Unlearning Requests Destroy Model Accuracy [65.80757820884476]
We expose a critical yet underexplored vulnerability in the deployment of unlearning systems.
We present a threat model where an attacker can degrade model accuracy by submitting adversarial unlearning requests for data not present in the training set.
We evaluate various verification mechanisms to detect the legitimacy of unlearning requests and reveal the challenges in verification.
arXiv Detail & Related papers (2024-10-12T16:47:04Z) - MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
We propose MASKDROID, a powerful detector with a strong discriminative ability to identify malware.
We introduce a masking mechanism into the Graph Neural Network based framework, forcing MASKDROID to recover the whole input graph.
This strategy enables the model to understand the malicious semantics and learn more stable representations, enhancing its robustness against adversarial attacks.
arXiv Detail & Related papers (2024-09-29T07:22:47Z) - Revisiting Concept Drift in Windows Malware Detection: Adaptation to Real Drifted Malware with Minimal Samples [10.352741619176383]
We propose a new technique for detecting and classifying drifted malware.
It learns drift-invariant features in malware control flow graphs by leveraging graph neural networks with adversarial domain adaptation.
Our approach significantly improves drifted malware detection on publicly available benchmarks and real-world malware databases reported daily by security companies.
arXiv Detail & Related papers (2024-07-18T22:06:20Z) - Explainability-Informed Targeted Malware Misclassification [0.0]
Machine learning models for malware classification into categories have shown promising results.
Deep neural networks have shown vulnerabilities against intentionally crafted adversarial attacks.
Our paper explores such adversarial vulnerabilities of neural network based malware classification system.
arXiv Detail & Related papers (2024-05-07T04:59:19Z) - Comprehensive evaluation of Mal-API-2019 dataset by machine learning in malware detection [0.5475886285082937]
This study conducts a thorough examination of malware detection using machine learning techniques.
The aim is to advance cybersecurity capabilities by identifying and mitigating threats more effectively.
arXiv Detail & Related papers (2024-03-04T17:22:43Z) - Malware Classification using Deep Neural Networks: Performance
Evaluation and Applications in Edge Devices [0.0]
Multiple Deep Neural Networks (DNNs) can be designed to detect and classify malware binaries.
The feasibility of deploying these DNN models on edge devices to enable real-time classification, particularly in resource-constrained scenarios proves to be integral to large IoT systems.
This study contributes to advancing malware detection techniques and emphasizes the significance of integrating cybersecurity measures for the early detection of malware.
arXiv Detail & Related papers (2023-08-21T16:34:46Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
We develop a certified defense, DRSM (De-Randomized Smoothed MalConv), by redesigning the de-randomized smoothing technique for the domain of malware detection.
Specifically, we propose a window ablation scheme to provably limit the impact of adversarial bytes while maximally preserving local structures of the executables.
We are the first to offer certified robustness in the realm of static detection of malware executables.
arXiv Detail & Related papers (2023-03-20T17:25:22Z) - Dataset Security for Machine Learning: Data Poisoning, Backdoor Attacks,
and Defenses [150.64470864162556]
This work systematically categorizes and discusses a wide range of dataset vulnerabilities and exploits.
In addition to describing various poisoning and backdoor threat models and the relationships among them, we develop their unified taxonomy.
arXiv Detail & Related papers (2020-12-18T22:38:47Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
We show how an attacker can launch a sophisticated and efficient poisoning attack targeting the dataset used to train a malware classifier.
As opposed to other poisoning attacks in the malware detection domain, our attack does not focus on malware families but rather on specific malware instances that contain an implanted trigger.
We propose a comprehensive detection approach that could serve as a future sophisticated defense against this newly discovered severe threat.
arXiv Detail & Related papers (2020-10-30T15:27:44Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
Recent advancements in Artificial Intelligence (AI) have brought new capabilities to behavioural analysis (UEBA) for cyber-security.
In this paper, we present a solution to effectively mitigate this attack by improving the detection process and efficiently leveraging human expertise.
arXiv Detail & Related papers (2020-01-13T13:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.