Optimal Group Fair Classifiers from Linear Post-Processing
- URL: http://arxiv.org/abs/2405.04025v1
- Date: Tue, 7 May 2024 05:58:44 GMT
- Title: Optimal Group Fair Classifiers from Linear Post-Processing
- Authors: Ruicheng Xian, Han Zhao,
- Abstract summary: We propose a post-processing algorithm for fair classification that mitigates model bias under a unified family of group fairness criteria.
It achieves fairness by re-calibrating the output score of the given base model with a "fairness cost" -- a linear combination of the (predicted) group memberships.
- Score: 10.615965454674901
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a post-processing algorithm for fair classification that mitigates model bias under a unified family of group fairness criteria covering statistical parity, equal opportunity, and equalized odds, applicable to multi-class problems and both attribute-aware and attribute-blind settings. It achieves fairness by re-calibrating the output score of the given base model with a "fairness cost" -- a linear combination of the (predicted) group memberships. Our algorithm is based on a representation result showing that the optimal fair classifier can be expressed as a linear post-processing of the loss function and the group predictor, derived via using these as sufficient statistics to reformulate the fair classification problem as a linear program. The parameters of the post-processor are estimated by solving the empirical LP. Experiments on benchmark datasets show the efficiency and effectiveness of our algorithm at reducing disparity compared to existing algorithms, including in-processing, especially on larger problems.
Related papers
- Bayes-Optimal Fair Classification with Linear Disparity Constraints via
Pre-, In-, and Post-processing [32.5214395114507]
We develop methods for Bayes-optimal fair classification, aiming to minimize classification error subject to given group fairness constraints.
We show that several popular disparity measures -- the deviations from demographic parity, equality of opportunity, and predictive equality -- are bilinear.
Our methods control disparity directly while achieving near-optimal fairness-accuracy tradeoffs.
arXiv Detail & Related papers (2024-02-05T08:59:47Z) - Bipartite Ranking Fairness through a Model Agnostic Ordering Adjustment [54.179859639868646]
We propose a model agnostic post-processing framework xOrder for achieving fairness in bipartite ranking.
xOrder is compatible with various classification models and ranking fairness metrics, including supervised and unsupervised fairness metrics.
We evaluate our proposed algorithm on four benchmark data sets and two real-world patient electronic health record repositories.
arXiv Detail & Related papers (2023-07-27T07:42:44Z) - Fair and Optimal Classification via Post-Processing [10.163721748735801]
This paper provides a complete characterization of the inherent tradeoff of demographic parity on classification problems.
We show that the minimum error rate achievable by randomized and attribute-aware fair classifiers is given by the optimal value of a Wasserstein-barycenter problem.
arXiv Detail & Related papers (2022-11-03T00:04:04Z) - Fairness via Adversarial Attribute Neighbourhood Robust Learning [49.93775302674591]
We propose a principled underlineRobust underlineAdversarial underlineAttribute underlineNeighbourhood (RAAN) loss to debias the classification head.
arXiv Detail & Related papers (2022-10-12T23:39:28Z) - Algorithmic Fairness Verification with Graphical Models [24.8005399877574]
We propose an efficient fairness verifier, called FVGM, that encodes correlations among features as a Bayesian network.
We show that FVGM leads to an accurate and scalable assessment for more diverse families of fairness-enhancing algorithms.
arXiv Detail & Related papers (2021-09-20T12:05:14Z) - Unbiased Subdata Selection for Fair Classification: A Unified Framework
and Scalable Algorithms [0.8376091455761261]
We show that many classification models within this framework can be recast as mixed-integer convex programs.
We then show that in the proposed problem, when the classification outcomes, "unsolvable subdata selection," is strongly-solvable.
This motivates us to develop an iterative refining strategy (IRS) to solve the classification instances.
arXiv Detail & Related papers (2020-12-22T21:09:38Z) - Beyond Individual and Group Fairness [90.4666341812857]
We present a new data-driven model of fairness that is guided by the unfairness complaints received by the system.
Our model supports multiple fairness criteria and takes into account their potential incompatibilities.
arXiv Detail & Related papers (2020-08-21T14:14:44Z) - Fairness with Overlapping Groups [15.154984899546333]
A standard goal is to ensure the equality of fairness metrics across multiple overlapping groups simultaneously.
We reconsider this standard fair classification problem using a probabilistic population analysis.
Our approach unifies a variety of existing group-fair classification methods and enables extensions to a wide range of non-decomposable multiclass performance metrics and fairness measures.
arXiv Detail & Related papers (2020-06-24T05:01:10Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartite ranking aims to learn a scoring function that ranks positive individuals higher than negative ones from labeled data.
There have been rising concerns on whether the learned scoring function can cause systematic disparity across different protected groups.
We propose a model post-processing framework for balancing them in the bipartite ranking scenario.
arXiv Detail & Related papers (2020-06-15T10:08:39Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
We consider fairness in the integration component of data management.
We propose an approach to identify a sub-collection of features that ensure the fairness of the dataset.
arXiv Detail & Related papers (2020-06-10T20:20:10Z) - Fair Correlation Clustering [92.15492066925977]
We obtain approximation algorithms for correlation clustering under several important types of fairness constraints.
We show that fair solutions to correlation clustering can be obtained with limited increase in cost compared to the state-of-the-art (unfair) algorithms.
arXiv Detail & Related papers (2020-02-06T14:28:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.