論文の概要: Counterfactual and Semifactual Explanations in Abstract Argumentation: Formal Foundations, Complexity and Computation
- arxiv url: http://arxiv.org/abs/2405.04081v1
- Date: Tue, 7 May 2024 07:27:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 14:59:23.581677
- Title: Counterfactual and Semifactual Explanations in Abstract Argumentation: Formal Foundations, Complexity and Computation
- Title(参考訳): 抽象論における対実的・半実的説明--形式的基礎・複雑性・計算
- Authors: Gianvincenzo Alfano, Sergio Greco, Francesco Parisi, Irina Trubitsyna,
- Abstract要約: 議論ベースのシステムは、意思決定プロセスをサポートしながら説明責任を欠くことが多い。
対実的・半実的な説明は解釈可能性のテクニックである。
本稿では,制約の弱いArgumentation Frameworkにおいて,逆ファクトおよび半ファクトのクエリを符号化可能であることを示す。
- 参考スコア(独自算出の注目度): 19.799266797193344
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Explainable Artificial Intelligence and Formal Argumentation have received significant attention in recent years. Argumentation-based systems often lack explainability while supporting decision-making processes. Counterfactual and semifactual explanations are interpretability techniques that provide insights into the outcome of a model by generating alternative hypothetical instances. While there has been important work on counterfactual and semifactual explanations for Machine Learning models, less attention has been devoted to these kinds of problems in argumentation. In this paper, we explore counterfactual and semifactual reasoning in abstract Argumentation Framework. We investigate the computational complexity of counterfactual- and semifactual-based reasoning problems, showing that they are generally harder than classical argumentation problems such as credulous and skeptical acceptance. Finally, we show that counterfactual and semifactual queries can be encoded in weak-constrained Argumentation Framework, and provide a computational strategy through ASP solvers.
- Abstract(参考訳): 説明可能な人工知能と形式的議論は近年大きな注目を集めている。
議論ベースのシステムは、意思決定プロセスをサポートしながら説明責任を欠くことが多い。
対実的および半実的説明(英: Counterfactual and semifactual explanations)は、別の仮説インスタンスを生成することによって、モデルの結果に対する洞察を提供する解釈可能性技術である。
機械学習モデルに対する反実的および半実的説明に関する重要な研究はあったが、議論におけるこのような問題にはあまり関心が向けられていない。
本稿では,抽象的論証フレームワークにおける反実的・半実的推論について考察する。
反事実的および半事実的推論問題の計算複雑性について検討し、信頼性や懐疑的受け入れのような古典的議論問題よりも一般に難しいことを示す。
最後に, 対実的および半実的クエリを弱制約のArgumentation Frameworkに符号化し, ASPソルバによる計算戦略を提案する。
関連論文リスト
- Dialogue-based Explanations for Logical Reasoning using Structured Argumentation [0.06138671548064355]
我々は、最先端技術の構造的弱点を特定し、これらの問題に対処するための一般的な議論に基づくアプローチを提案する。
我々の研究は、問合せ応答を計算し、説明するための弁証法として対話モデルを提供する。
これにより、既存の説明形式よりも表現的かつ直感的な弁証的証明木を説明として構築することができる。
論文 参考訳(メタデータ) (2025-02-16T22:26:18Z) - Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
本稿では,Large Language Models (LLM) の質問をよりよく理解するための構造指向分析手法を提案する。
複雑な質問応答タスクの信頼性をさらに向上するために,多エージェント推論システム,構造指向自律推論エージェント(SARA)を提案する。
大規模な実験により,提案システムの有効性が検証された。
論文 参考訳(メタデータ) (2024-10-18T05:30:33Z) - Even-if Explanations: Formal Foundations, Priorities and Complexity [18.126159829450028]
線形モデルとツリーモデルの両方がニューラルネットワークよりも厳密に解釈可能であることを示す。
ユーザが好みに基づいて説明をパーソナライズすることのできる、嗜好に基づくフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-17T11:38:58Z) - Generation of Explanations for Logic Reasoning [0.0]
この研究は、GPT-3.5-turboを用いて、フォーティオリの議論の分析を自動化することに集中している。
この論文は人工知能と論理的推論の分野に多大な貢献をしている。
論文 参考訳(メタデータ) (2023-11-22T15:22:04Z) - A Unifying Framework for Learning Argumentation Semantics [50.69905074548764]
Inductive Logic Programmingアプローチを用いて、抽象的および構造化された議論フレームワークのアクセシビリティセマンティクスを解釈可能な方法で学習する新しいフレームワークを提案する。
提案手法は既存の議論解法よりも優れており,フォーマルな議論や人間と機械の対話の領域において,新たな研究の方向性が開けることになる。
論文 参考訳(メタデータ) (2023-10-18T20:18:05Z) - Large Language Models as Analogical Reasoners [155.9617224350088]
CoT(Chain-of- Thought)は、言語モデルのプロンプトとして、推論タスク全体で素晴らしいパフォーマンスを示す。
そこで本稿では,大規模言語モデルの推論プロセスを自動的にガイドする,新たなプロンプト手法であるアナログプロンプトを導入する。
論文 参考訳(メタデータ) (2023-10-03T00:57:26Z) - MetaLogic: Logical Reasoning Explanations with Fine-Grained Structure [129.8481568648651]
複雑な実生活シナリオにおけるモデルの論理的推論能力を調べるためのベンチマークを提案する。
推論のマルチホップ連鎖に基づいて、説明形式は3つの主成分を含む。
この新たな説明形式を用いて,現在のベストモデルの性能を評価した。
論文 参考訳(メタデータ) (2022-10-22T16:01:13Z) - Admissibility in Strength-based Argumentation: Complexity and Algorithms
(Extended Version with Proofs) [1.5828697880068698]
我々は、適応性に基づく意味論の強度に基づく論証フレームワーク(StrAF)への適応について研究する。
特に文献で定義された強い許容性は望ましい性質、すなわちDungの基本的な補題を満たさないことを示す。
計算(強弱)拡張に対する擬ブール制約の翻訳を提案する。
論文 参考訳(メタデータ) (2022-07-05T18:42:04Z) - Logical Satisfiability of Counterfactuals for Faithful Explanations in
NLI [60.142926537264714]
本稿では, 忠実度スルー・カウンタファクトの方法論について紹介する。
これは、説明に表される論理述語に基づいて、反実仮説を生成する。
そして、そのモデルが表現された論理と反ファクトの予測が一致しているかどうかを評価する。
論文 参考訳(メタデータ) (2022-05-25T03:40:59Z) - A Formalisation of Abstract Argumentation in Higher-Order Logic [77.34726150561087]
本稿では,古典的高階論理へのエンコーディングに基づく抽象的議論フレームワークの表現手法を提案する。
対話型および自動推論ツールを用いた抽象的議論フレームワークのコンピュータ支援評価のための一様フレームワークを提供する。
論文 参考訳(メタデータ) (2021-10-18T10:45:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。