論文の概要: Adaptive Least Mean pth Power Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2405.04111v2
- Date: Sat, 23 Nov 2024 10:26:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:14:05.584714
- Title: Adaptive Least Mean pth Power Graph Neural Networks
- Title(参考訳): 適応最小平均pthパワーグラフニューラルネットワーク
- Authors: Yi Yan, Changran Peng, Ercan E. Kuruoglu,
- Abstract要約: オンライングラフ信号推定のための適応フィルタとグラフニューラルネットワークを組み合わせた普遍的なフレームワークを提案する。
LMP-GNNは、ノイズや観察の欠如、オンライン更新機能を扱う際の適応フィルタリングの利点を保っている。
4つの異なる雑音分布下での2つの実世界の温度グラフとトラヒックグラフに関する実験結果から,提案したLMP-GNNの有効性とロバスト性が確認された。
- 参考スコア(独自算出の注目度): 5.4004917284050835
- License:
- Abstract: In the presence of impulsive noise, and missing observations, accurate online prediction of time-varying graph signals poses a crucial challenge in numerous application domains. We propose the Adaptive Least Mean $p^{th}$ Power Graph Neural Networks (LMP-GNN), a universal framework combining adaptive filter and graph neural network for online graph signal estimation. LMP-GNN retains the advantage of adaptive filtering in handling noise and missing observations as well as the online update capability. The incorporated graph neural network within the LMP-GNN can train and update filter parameters online instead of predefined filter parameters in previous methods, outputting more accurate prediction results. The adaptive update scheme of the LMP-GNN follows the solution of a $l_p$-norm optimization, rooting to the minimum dispersion criterion, and yields robust estimation results for time-varying graph signals under impulsive noise. A special case of LMP-GNN named the Sign-GNN is also provided and analyzed, Experiment results on two real-world datasets of temperature graph and traffic graph under four different noise distributions prove the effectiveness and robustness of our proposed LMP-GNN.
- Abstract(参考訳): インパルスノイズや観測の欠如の存在下では、時間変化のグラフ信号の正確なオンライン予測は多くのアプリケーション領域において重要な課題となっている。
適応型フィルタとグラフニューラルネットワークを組み合わせた,オンライングラフ信号推定のための汎用フレームワークとして,Adaptive Least Mean $p^{th}$ Power Graph Neural Networks (LMP-GNN)を提案する。
LMP-GNNは、ノイズや観察の欠如、オンライン更新機能を扱う際の適応フィルタリングの利点を保っている。
LMP-GNNに組み込まれたグラフニューラルネットワークは、以前の方法で事前に定義されたフィルタパラメータではなく、フィルタパラメータをオンラインでトレーニングし、更新することが可能で、より正確な予測結果が出力される。
LMP-GNNの適応的更新スキームは、最小分散基準に根ざした$l_p$-norm最適化の解に従い、インパルスノイズ下での時間変化グラフ信号の堅牢な推定結果を得る。
また,LMP-GNNと名づけられたLMP-GNNの特殊な事例も提供・解析され,提案したLMP-GNNの有効性とロバスト性を示す4つの異なる雑音分布下での2つの実世界の温度グラフとトラヒックグラフの実験結果が得られた。
関連論文リスト
- Dual-Frequency Filtering Self-aware Graph Neural Networks for Homophilic and Heterophilic Graphs [60.82508765185161]
我々は、Dual-Frequency Filtering Self-Aware Graph Neural Networks (DFGNN)を提案する。
DFGNNは低域通過フィルタと高域通過フィルタを統合し、滑らかで詳細な位相的特徴を抽出する。
フィルター比を動的に調整し、ホモフィルグラフとヘテロフィルグラフの両方に対応する。
論文 参考訳(メタデータ) (2024-11-18T04:57:05Z) - Graph Neural Network-Accelerated Network-Reconfigured Optimal Power Flow [0.24554686192257422]
本稿では、特にグラフニューラルネットワーク(GNN)を利用した機械学習(ML)に基づくアプローチを提案する。
GNNモデルは最適化段階に入る前に最高のトポロジを予測するためにオフラインで訓練される。
高速なオンラインポストML選択層も提案され、GNN予測を分析し、高い信頼性で予測されたNRソリューションのサブセットを選択する。
論文 参考訳(メタデータ) (2024-10-22T22:35:09Z) - Adaptive Least Mean Squares Graph Neural Networks and Online Graph
Signal Estimation [3.6448362316632115]
時間変化グラフ信号のオンライン推定のための効率的なニューラルネットワークアーキテクチャを提案する。
Adaptive Least Mean Squares Graph Neural Networks (LMS-GNN)は、適応グラフフィルタとグラフニューラルネットワーク(GNN)の組み合わせである。
実世界の温度データを用いて実験したところ,我々のLMS-GNNはグラフベースの手法よりも正確なオンライン予測を実現していることがわかった。
論文 参考訳(メタデータ) (2024-01-27T05:47:12Z) - Learning to Reweight for Graph Neural Network [63.978102332612906]
グラフニューラルネットワーク(GNN)は、グラフタスクに対して有望な結果を示す。
既存のGNNの一般化能力は、テストとトレーニンググラフデータの間に分散シフトが存在する場合に低下する。
本稿では,分布外一般化能力を大幅に向上させる非線形グラフデコリレーション法を提案する。
論文 参考訳(メタデータ) (2023-12-19T12:25:10Z) - Edge Graph Neural Networks for Massive MIMO Detection [15.970981766599035]
無線通信システムにおいて、MIMO(Massive Multiple-Input Multiple-Out)検出は重要な問題である。
従来のBreief Propagation(BP)検出器はループグラフでは性能が良くないが、最近のグラフニューラルネットワーク(GNN)ベースの手法はBPの欠点を克服し、優れた性能を実現することができる。
論文 参考訳(メタデータ) (2022-05-22T08:01:47Z) - Adaptive Kernel Graph Neural Network [21.863238974404474]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの表現学習において大きな成功を収めている。
本稿では,AKGNN(Adaptive Kernel Graph Neural Network)という新しいフレームワークを提案する。
AKGNNは、最初の試みで最適なグラフカーネルに統一的に適応することを学ぶ。
評価されたベンチマークデータセットで実験を行い、提案したAKGNNの優れた性能を示す有望な結果を得た。
論文 参考訳(メタデータ) (2021-12-08T20:23:58Z) - Fast Power Control Adaptation via Meta-Learning for Random Edge Graph
Neural Networks [39.59987601426039]
本稿では,時間変動トポロジに対する電力制御政策の迅速な適応を可能にする高レベル問題について検討する。
我々は,新しいネットワーク構成への数ショット適応を最適化するために,複数のトポロジのデータに一階のメタラーニングを適用した。
論文 参考訳(メタデータ) (2021-05-02T12:43:10Z) - Graph Neural Networks with Adaptive Frequency Response Filter [55.626174910206046]
適応周波数応答フィルタを用いたグラフニューラルネットワークフレームワークAdaGNNを開発した。
提案手法の有効性を,様々なベンチマークデータセット上で実証的に検証した。
論文 参考訳(メタデータ) (2021-04-26T19:31:21Z) - Unrolling of Deep Graph Total Variation for Image Denoising [106.93258903150702]
本稿では,従来のグラフ信号フィルタリングと深い特徴学習を併用して,競合するハイブリッド設計を提案する。
解釈可能な低パスグラフフィルタを用い、最先端のDL復調方式DnCNNよりも80%少ないネットワークパラメータを用いる。
論文 参考訳(メタデータ) (2020-10-21T20:04:22Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
最近提案された幾何散乱変換の緩和に基づく新しいグラフニューラルネットワーク(GNN)モジュールを提案する。
我々の学習可能な幾何散乱(LEGS)モジュールは、ウェーブレットの適応的なチューニングを可能にし、学習された表現に帯域通過の特徴が現れるように促す。
論文 参考訳(メタデータ) (2020-10-06T01:20:27Z) - Stochastic Graph Neural Networks [123.39024384275054]
グラフニューラルネットワーク(GNN)は、分散エージェント調整、制御、計画に応用したグラフデータの非線形表現をモデル化する。
現在のGNNアーキテクチャは理想的なシナリオを前提として,環境やヒューマンファクタ,あるいは外部攻撃によるリンク変動を無視している。
これらの状況において、GNNは、トポロジカルなランダム性を考慮していない場合、その分散タスクに対処することができない。
論文 参考訳(メタデータ) (2020-06-04T08:00:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。