論文の概要: Vidu: a Highly Consistent, Dynamic and Skilled Text-to-Video Generator with Diffusion Models
- arxiv url: http://arxiv.org/abs/2405.04233v1
- Date: Tue, 7 May 2024 11:52:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 14:20:03.712970
- Title: Vidu: a Highly Consistent, Dynamic and Skilled Text-to-Video Generator with Diffusion Models
- Title(参考訳): Vidu:拡散モデル付き高一貫性でダイナミックで熟練したテキスト・ツー・ビデオ・ジェネレータ
- Authors: Fan Bao, Chendong Xiang, Gang Yue, Guande He, Hongzhou Zhu, Kaiwen Zheng, Min Zhao, Shilong Liu, Yaole Wang, Jun Zhu,
- Abstract要約: Viduはテキストからビデオまでのジェネレータで、1世代で最大16秒間1080pのビデオを生成することができる。
ヴィドゥは強いコヒーレンスとダイナミズムを示し、現実的なビデオと想像的なビデオの両方を生成できる。
- 参考スコア(独自算出の注目度): 26.494568142820775
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Vidu, a high-performance text-to-video generator that is capable of producing 1080p videos up to 16 seconds in a single generation. Vidu is a diffusion model with U-ViT as its backbone, which unlocks the scalability and the capability for handling long videos. Vidu exhibits strong coherence and dynamism, and is capable of generating both realistic and imaginative videos, as well as understanding some professional photography techniques, on par with Sora -- the most powerful reported text-to-video generator. Finally, we perform initial experiments on other controllable video generation, including canny-to-video generation, video prediction and subject-driven generation, which demonstrate promising results.
- Abstract(参考訳): 高速なテキスト・ビデオ・ジェネレータであるViduを1世代で最大16秒で1080pの動画を生成できる。
Viduは、U-ViTをバックボーンとする拡散モデルであり、長いビデオを扱うスケーラビリティと能力を解放する。
Viduは強力なコヒーレンスとダイナミズムを示しており、現実的なビデオと想像的なビデオの両方を生成でき、またプロの撮影技術も、最も強力なテキスト・ツー・ビデオジェネレータであるSoraと同程度に理解することができる。
最後に,キャニー・ツー・ビデオ生成,映像予測,主観駆動生成など,他の制御可能なビデオ生成の初期実験を行い,有望な結果を示す。
関連論文リスト
- DAWN: Dynamic Frame Avatar with Non-autoregressive Diffusion Framework for Talking Head Video Generation [50.66658181705527]
本稿では,動的長大映像のオール・アット・オンス生成を可能にするフレームワークであるDAWNを提案する。
DAWNは,(1)潜在動作空間における音声駆動型顔力学生成,(2)音声駆動型頭部ポーズと点滅生成の2つの主要成分から構成される。
本手法は, 唇の動きを正確に表現し, 自然なポーズ・瞬き動作を特徴とする実写映像と鮮明な映像を生成する。
論文 参考訳(メタデータ) (2024-10-17T16:32:36Z) - VideoPhy: Evaluating Physical Commonsense for Video Generation [93.28748850301949]
生成したビデオが現実世界のアクティビティの物理的常識に従うかどうかを評価するためのベンチマークであるVideoPhyを提示する。
そして、さまざまな最先端のテキスト・ビデオ生成モデルからキャプションに条件付けされたビデオを生成する。
人間の評価では、既存のモデルには、与えられたテキストプロンプトに付着したビデオを生成する能力が欠けていることが判明した。
論文 参考訳(メタデータ) (2024-06-05T17:53:55Z) - StreamingT2V: Consistent, Dynamic, and Extendable Long Video Generation from Text [58.49820807662246]
本稿では,80,240,600,1200以上のフレームをスムーズな遷移で自動回帰的に生成するStreamingT2Vを紹介する。
私たちのコードは、https://github.com/Picsart-AI-Research/StreamingT2V.comで利用可能です。
論文 参考訳(メタデータ) (2024-03-21T18:27:29Z) - AtomoVideo: High Fidelity Image-to-Video Generation [25.01443995920118]
AtomoVideo という画像合成のための高忠実度フレームワークを提案する。
多粒度画像インジェクションに基づいて、生成した映像の忠実度を所定の画像に高める。
我々のアーキテクチャは、ビデオフレーム予測タスクに柔軟に拡張し、反復生成による長いシーケンス予測を可能にする。
論文 参考訳(メタデータ) (2024-03-04T07:41:50Z) - Make Pixels Dance: High-Dynamic Video Generation [13.944607760918997]
最先端のビデオ生成手法は、高い忠実さを維持しつつも、最小限のモーションでビデオクリップを生成する傾向がある。
ビデオ生成のためのテキスト命令と合わせて,第1フレームと第2フレームの両方のイメージ命令を組み込んだ,新しいアプローチであるPixelDanceを紹介する。
論文 参考訳(メタデータ) (2023-11-18T06:25:58Z) - VideoCrafter1: Open Diffusion Models for High-Quality Video Generation [97.5767036934979]
高品質ビデオ生成のための2つの拡散モデル、すなわち、テキスト・ツー・ビデオ(T2V)と画像・ツー・ビデオ(I2V)モデルを導入する。
T2Vモデルは与えられたテキスト入力に基づいてビデオを合成し、I2Vモデルは追加のイメージ入力を含む。
提案したT2Vモデルは,解像度が1024×576$のリアルで映像品質の高いビデオを生成することができる。
論文 参考訳(メタデータ) (2023-10-30T13:12:40Z) - LaMD: Latent Motion Diffusion for Video Generation [69.4111397077229]
LaMDフレームワークは、モーション分解されたビデオオートエンコーダと拡散に基づくモーションジェネレータで構成される。
その結果、LaMDはダイナミックスから高度に制御可能な動きに至るまで、幅広い動きを持つ高品質なビデオを生成することがわかった。
論文 参考訳(メタデータ) (2023-04-23T10:32:32Z) - Long Video Generation with Time-Agnostic VQGAN and Time-Sensitive
Transformer [66.56167074658697]
本稿では3D-VQGANとトランスフォーマーを使って数千フレームのビデオを生成する手法を提案する。
評価の結果,16フレームのビデオクリップでトレーニングしたモデルでは,多種多様でコヒーレントで高品質な長編ビデオが生成できることがわかった。
また,テキストと音声に時間情報を組み込むことで,有意義な長ビデオを生成するための条件付き拡張についても紹介する。
論文 参考訳(メタデータ) (2022-04-07T17:59:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。