論文の概要: LTLDoG: Satisfying Temporally-Extended Symbolic Constraints for Safe Diffusion-based Planning
- arxiv url: http://arxiv.org/abs/2405.04235v2
- Date: Mon, 30 Sep 2024 08:42:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 21:58:34.301420
- Title: LTLDoG: Satisfying Temporally-Extended Symbolic Constraints for Safe Diffusion-based Planning
- Title(参考訳): LTLDoG: 安全な拡散計画のための一時的拡張シンボリック制約を満足する
- Authors: Zeyu Feng, Hao Luan, Pranav Goyal, Harold Soh,
- Abstract要約: 本研究では,新しい静的かつ時間的に拡張された制約/命令に準拠する長い水平軌道を生成することに焦点を当てる。
本稿では、線形時間論理を用いて指定された命令を与えられた逆プロセスの推論ステップを変更する、データ駆動拡散に基づくフレームワーク、 finiteDoGを提案する。
ロボットナビゲーションと操作の実験では、障害物回避と訪問シーケンスを指定する公式を満たす軌道を生成することができる。
- 参考スコア(独自算出の注目度): 12.839846486863308
- License:
- Abstract: Operating effectively in complex environments while complying with specified constraints is crucial for the safe and successful deployment of robots that interact with and operate around people. In this work, we focus on generating long-horizon trajectories that adhere to novel static and temporally-extended constraints/instructions at test time. We propose a data-driven diffusion-based framework, LTLDoG, that modifies the inference steps of the reverse process given an instruction specified using finite linear temporal logic ($\text{LTL}_f$). LTLDoG leverages a satisfaction value function on $\text{LTL}_f$ and guides the sampling steps using its gradient field. This value function can also be trained to generalize to new instructions not observed during training, enabling flexible test-time adaptability. Experiments in robot navigation and manipulation illustrate that the method is able to generate trajectories that satisfy formulae that specify obstacle avoidance and visitation sequences. Code and supplementary material are available online at https://github.com/clear-nus/ltldog.
- Abstract(参考訳): 特定の制約を満たしながら、複雑な環境で効果的に運用することは、人間と対話し、操作するロボットの安全かつ成功に導くために不可欠である。
本研究では,新しい静的かつ時間的に拡張された制約/命令に準拠する長い水平軌道を生成することに焦点を当てる。
本稿では,有限線形時間論理($\text{LTL}_f$)を用いて指定された命令を与えられた逆プロセスの推論ステップを変更する,データ駆動拡散に基づくフレームワーク LTLDoG を提案する。
LTLDoGは$\text{LTL}_f$上の満足度値関数を利用し、勾配場を用いてサンプリングステップをガイドする。
この値関数は、トレーニング中に観察されない新しい命令に一般化するようにトレーニングすることもできる。
ロボットナビゲーションと操作の実験では、障害物回避と訪問シーケンスを指定する公式を満たす軌道を生成することができる。
コードと補足資料はhttps://github.com/clear-nus/ltldog.comで公開されている。
関連論文リスト
- DeepLTL: Learning to Efficiently Satisfy Complex LTL Specifications [59.01527054553122]
リニア時間論理(LTL)は、強化学習(RL)における複雑で時間的に拡張されたタスクを特定する強力なフォーマリズムとして最近採用されている。
既存のアプローチはいくつかの欠点に悩まされており、それらは有限水平フラグメントにのみ適用でき、最適以下の解に制限され、安全制約を適切に扱えない。
本研究では,これらの問題に対処するための新しい学習手法を提案する。
提案手法は, 自動仕様のセマンティクスを明示的に表現したB"uchiaの構造を利用して, 所望の式を満たすための真理代入の順序を条件としたポリシーを学習する。
論文 参考訳(メタデータ) (2024-10-06T21:30:38Z) - Diffusion Meets Options: Hierarchical Generative Skill Composition for Temporally-Extended Tasks [12.239868705130178]
線形時間論理(LTL)によって規定された命令に基づいて計画の生成と更新を行うデータ駆動階層型フレームワークを提案する。
提案手法は,オフラインの非専門家データセットから階層的強化学習を用いて,時間的タスクを選択肢の連鎖に分解する。
バッチ生成における行列誘導後サンプリング手法を考案し,拡散生成オプションの速度と多様性を向上する。
論文 参考訳(メタデータ) (2024-10-03T11:10:37Z) - Directed Exploration in Reinforcement Learning from Linear Temporal Logic [59.707408697394534]
リニア時間論理(LTL)は強化学習におけるタスク仕様のための強力な言語である。
合成された報酬信号は基本的に疎結合であり,探索が困難であることを示す。
我々は、仕様をさらに活用し、それに対応するリミット決定性B"uchi Automaton(LDBA)をマルコフ報酬プロセスとしてキャストすることで、よりよい探索を実現することができることを示す。
論文 参考訳(メタデータ) (2024-08-18T14:25:44Z) - Scaling Learning based Policy Optimization for Temporal Logic Tasks by Controller Network Dropout [4.421486904657393]
非線形環境下で動作する自律エージェントに対して,フィードバックコントローラを訓練するためのモデルに基づくアプローチを提案する。
この学習問題は、エージェントのタスク目標の時間的地平線に比例して繰り返し単位の数が比例する、リカレントニューラルネットワーク(RNN)のトレーニングとどのように似ているかを示す。
そこで我々は,ドロップアウトあるいは勾配サンプリングのアイデアに基づく新しい勾配近似アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-03-23T12:53:51Z) - Defining and executing temporal constraints for evaluating engineering
artifact compliance [56.08728135126139]
プロセスコンプライアンスは、実際のエンジニアリング作業が記述されたエンジニアリングプロセスに可能な限り密接に従うことを保証することに焦点を当てます。
これらのプロセスの制約をチェックすることは、依然として大変な作業であり、多くの手作業を必要とし、プロセスの後半にエンジニアにフィードバックを提供する。
関連するエンジニアリングアーティファクト間の時間的制約を,アーティファクトの変更毎に段階的にチェックする,自動制約チェックアプローチを提案する。
論文 参考訳(メタデータ) (2023-12-20T13:26:31Z) - Action-Quantized Offline Reinforcement Learning for Robotic Skill
Learning [68.16998247593209]
オフライン強化学習(RL)パラダイムは、静的な行動データセットを、データを収集したポリシーよりも優れたパフォーマンスのポリシーに変換するためのレシピを提供する。
本稿では,アクション量子化のための適応型スキームを提案する。
IQL,CQL,BRACといった最先端のオフラインRL手法が,提案手法と組み合わせることで,ベンチマークのパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2023-10-18T06:07:10Z) - Signal Temporal Logic Neural Predictive Control [15.540490027770621]
本稿では,信号時相論理(STL)に規定される要件を満たすためにニューラルネットワークコントローラを学習する手法を提案する。
我々のコントローラは、トレーニングにおけるSTLロバストネススコアを最大化するために軌道のロールアウトを学習する。
バックアップポリシは、コントローラがフェールした場合の安全性を保証するように設計されています。
論文 参考訳(メタデータ) (2023-09-10T20:31:25Z) - Learning Minimally-Violating Continuous Control for Infeasible Linear
Temporal Logic Specifications [2.496282558123411]
本稿では、線形時間論理(LTL)として表される複雑な高次タスクを満たすための目標駆動ナビゲーションの連続時間制御について検討する。
基礎となる力学系が未知である深層強化学習(DRL)を用いたモデルフリー合成フレームワーク(不透明ボックス)を提案する。
論文 参考訳(メタデータ) (2022-10-03T18:32:20Z) - AdaS: Adaptive Scheduling of Stochastic Gradients [50.80697760166045]
我々は、textit "knowledge gain" と textit "mapping condition" の概念を導入し、Adaptive Scheduling (AdaS) と呼ばれる新しいアルゴリズムを提案する。
実験によると、AdaSは派生した指標を用いて、既存の適応学習手法よりも高速な収束と優れた一般化、そして(b)いつトレーニングを中止するかを決定するための検証セットへの依存の欠如を示す。
論文 参考訳(メタデータ) (2020-06-11T16:36:31Z) - Continuous Motion Planning with Temporal Logic Specifications using Deep
Neural Networks [16.296473750342464]
動作計画問題に対する制御ポリシを合成するモデルフリー強化学習法を提案する。
ロボットは、連続状態と行動空間を持つ離散マルコフ時間決定プロセス(MDP)としてモデル化される。
我々は,アクタクリティカル強化学習法を用いて,価値関数とポリシーを近似するために,ディープニューラルネットワークを訓練する。
論文 参考訳(メタデータ) (2020-04-02T17:58:03Z) - Certified Reinforcement Learning with Logic Guidance [78.2286146954051]
線形時間論理(LTL)を用いて未知の連続状態/動作マルコフ決定過程(MDP)のゴールを定式化できるモデルフリーなRLアルゴリズムを提案する。
このアルゴリズムは、トレースが仕様を最大確率で満たす制御ポリシーを合成することが保証される。
論文 参考訳(メタデータ) (2019-02-02T20:09:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。