論文の概要: LTLDoG: Satisfying Temporally-Extended Symbolic Constraints for Safe Diffusion-based Planning
- arxiv url: http://arxiv.org/abs/2405.04235v2
- Date: Mon, 30 Sep 2024 08:42:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 21:58:34.301420
- Title: LTLDoG: Satisfying Temporally-Extended Symbolic Constraints for Safe Diffusion-based Planning
- Title(参考訳): LTLDoG: 安全な拡散計画のための一時的拡張シンボリック制約を満足する
- Authors: Zeyu Feng, Hao Luan, Pranav Goyal, Harold Soh,
- Abstract要約: 本研究では,新しい静的かつ時間的に拡張された制約/命令に準拠する長い水平軌道を生成することに焦点を当てる。
本稿では、線形時間論理を用いて指定された命令を与えられた逆プロセスの推論ステップを変更する、データ駆動拡散に基づくフレームワーク、 finiteDoGを提案する。
ロボットナビゲーションと操作の実験では、障害物回避と訪問シーケンスを指定する公式を満たす軌道を生成することができる。
- 参考スコア(独自算出の注目度): 12.839846486863308
- License:
- Abstract: Operating effectively in complex environments while complying with specified constraints is crucial for the safe and successful deployment of robots that interact with and operate around people. In this work, we focus on generating long-horizon trajectories that adhere to novel static and temporally-extended constraints/instructions at test time. We propose a data-driven diffusion-based framework, LTLDoG, that modifies the inference steps of the reverse process given an instruction specified using finite linear temporal logic ($\text{LTL}_f$). LTLDoG leverages a satisfaction value function on $\text{LTL}_f$ and guides the sampling steps using its gradient field. This value function can also be trained to generalize to new instructions not observed during training, enabling flexible test-time adaptability. Experiments in robot navigation and manipulation illustrate that the method is able to generate trajectories that satisfy formulae that specify obstacle avoidance and visitation sequences. Code and supplementary material are available online at https://github.com/clear-nus/ltldog.
- Abstract(参考訳): 特定の制約を満たしながら、複雑な環境で効果的に運用することは、人間と対話し、操作するロボットの安全かつ成功に導くために不可欠である。
本研究では,新しい静的かつ時間的に拡張された制約/命令に準拠する長い水平軌道を生成することに焦点を当てる。
本稿では,有限線形時間論理($\text{LTL}_f$)を用いて指定された命令を与えられた逆プロセスの推論ステップを変更する,データ駆動拡散に基づくフレームワーク LTLDoG を提案する。
LTLDoGは$\text{LTL}_f$上の満足度値関数を利用し、勾配場を用いてサンプリングステップをガイドする。
この値関数は、トレーニング中に観察されない新しい命令に一般化するようにトレーニングすることもできる。
ロボットナビゲーションと操作の実験では、障害物回避と訪問シーケンスを指定する公式を満たす軌道を生成することができる。
コードと補足資料はhttps://github.com/clear-nus/ltldog.comで公開されている。
関連論文リスト
- LTL-Constrained Policy Optimization with Cycle Experience Replay [19.43224037705577]
線形論理(LTL)は、強化学習エージェントの動作を制限するための正確な手段を提供する。
本稿では、この問題に対する報酬形成アプローチであるCyclER(CyclER)について紹介する。
論文 参考訳(メタデータ) (2024-04-17T17:24:44Z) - Scaling Learning based Policy Optimization for Temporal Tasks via Dropout [4.421486904657393]
非線形環境下で動作する自律エージェントに対して,フィードバックコントローラを訓練するためのモデルに基づくアプローチを提案する。
この学習問題は、エージェントのタスク目標の時間的地平線に比例して繰り返し単位の数が比例する、リカレントニューラルネットワーク(RNN)のトレーニングとどのように似ているかを示す。
そこで我々は,ドロップアウトあるいは勾配サンプリングのアイデアに基づく新しい勾配近似アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-03-23T12:53:51Z) - InferAligner: Inference-Time Alignment for Harmlessness through
Cross-Model Guidance [56.184255657175335]
我々は,無害アライメントのためのクロスモデルガイダンスを利用する新しい推論時間アライメント手法であるtextbfInferAligner を開発した。
実験結果から,本手法はファイナンス,医学,数学の分野特化モデルに極めて効果的に適用可能であることが示された。
これは有害な命令とジェイルブレイク攻撃の両方のアタック成功率(ASR)を著しく低下させ、下流タスクではほとんど変化のないパフォーマンスを維持している。
論文 参考訳(メタデータ) (2024-01-20T10:41:03Z) - Defining and executing temporal constraints for evaluating engineering
artifact compliance [56.08728135126139]
プロセスコンプライアンスは、実際のエンジニアリング作業が記述されたエンジニアリングプロセスに可能な限り密接に従うことを保証することに焦点を当てます。
これらのプロセスの制約をチェックすることは、依然として大変な作業であり、多くの手作業を必要とし、プロセスの後半にエンジニアにフィードバックを提供する。
関連するエンジニアリングアーティファクト間の時間的制約を,アーティファクトの変更毎に段階的にチェックする,自動制約チェックアプローチを提案する。
論文 参考訳(メタデータ) (2023-12-20T13:26:31Z) - Signal Temporal Logic Neural Predictive Control [15.540490027770621]
本稿では,信号時相論理(STL)に規定される要件を満たすためにニューラルネットワークコントローラを学習する手法を提案する。
我々のコントローラは、トレーニングにおけるSTLロバストネススコアを最大化するために軌道のロールアウトを学習する。
バックアップポリシは、コントローラがフェールした場合の安全性を保証するように設計されています。
論文 参考訳(メタデータ) (2023-09-10T20:31:25Z) - Funnel-based Reward Shaping for Signal Temporal Logic Tasks in
Reinforcement Learning [0.0]
本稿では,STL(Signal Temporal Logic)仕様を適用した制御器を学習するために,抽出可能な強化学習アルゴリズムを提案する。
異なる環境を用いた複数のSTLタスクに対して,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-11-30T19:38:21Z) - Responsive Safety in Reinforcement Learning by PID Lagrangian Methods [74.49173841304474]
ラグランジアン法は振動とオーバーシュートを示し、安全強化学習に適用すると制約違反行動を引き起こす。
制約関数の微分を利用する新しいラグランジュ乗算器更新法を提案する。
我々はPIDラグランジアン法を深部RLに適用し、安全RLベンチマークであるSafety Gymにおける新しい技術状態を設定する。
論文 参考訳(メタデータ) (2020-07-08T08:43:14Z) - AdaS: Adaptive Scheduling of Stochastic Gradients [50.80697760166045]
我々は、textit "knowledge gain" と textit "mapping condition" の概念を導入し、Adaptive Scheduling (AdaS) と呼ばれる新しいアルゴリズムを提案する。
実験によると、AdaSは派生した指標を用いて、既存の適応学習手法よりも高速な収束と優れた一般化、そして(b)いつトレーニングを中止するかを決定するための検証セットへの依存の欠如を示す。
論文 参考訳(メタデータ) (2020-06-11T16:36:31Z) - Learning Control Barrier Functions from Expert Demonstrations [69.23675822701357]
制御障壁関数(CBF)に基づく安全な制御器合成のための学習に基づくアプローチを提案する。
最適化に基づくCBFの学習手法を解析し、基礎となる力学系のリプシッツ仮定の下で証明可能な安全保証を享受する。
私たちの知る限りでは、これらはデータから確実に安全な制御障壁関数を学習する最初の結果です。
論文 参考訳(メタデータ) (2020-04-07T12:29:06Z) - Continuous Motion Planning with Temporal Logic Specifications using Deep
Neural Networks [16.296473750342464]
動作計画問題に対する制御ポリシを合成するモデルフリー強化学習法を提案する。
ロボットは、連続状態と行動空間を持つ離散マルコフ時間決定プロセス(MDP)としてモデル化される。
我々は,アクタクリティカル強化学習法を用いて,価値関数とポリシーを近似するために,ディープニューラルネットワークを訓練する。
論文 参考訳(メタデータ) (2020-04-02T17:58:03Z) - Certified Reinforcement Learning with Logic Guidance [78.2286146954051]
線形時間論理(LTL)を用いて未知の連続状態/動作マルコフ決定過程(MDP)のゴールを定式化できるモデルフリーなRLアルゴリズムを提案する。
このアルゴリズムは、トレースが仕様を最大確率で満たす制御ポリシーを合成することが保証される。
論文 参考訳(メタデータ) (2019-02-02T20:09:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。