論文の概要: Audio-Visual Speech Representation Expert for Enhanced Talking Face Video Generation and Evaluation
- arxiv url: http://arxiv.org/abs/2405.04327v1
- Date: Tue, 7 May 2024 13:55:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 14:00:34.855792
- Title: Audio-Visual Speech Representation Expert for Enhanced Talking Face Video Generation and Evaluation
- Title(参考訳): 音声映像の高機能化と評価のための音声・映像音声表現エキスパート
- Authors: Dogucan Yaman, Fevziye Irem Eyiokur, Leonard Bärmann, Seymanur Aktı, Hazım Kemal Ekenel, Alexander Waibel,
- Abstract要約: 本稿では,学習中の唇の同期損失の計算にAV-HuBERT (Audio-visual speech representation expert) を用いることを提案する。
3つの新しい唇同期評価指標を導入し,唇同期性能を総合的に評価することを目的とした。
- 参考スコア(独自算出の注目度): 51.92522679353731
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the task of talking face generation, the objective is to generate a face video with lips synchronized to the corresponding audio while preserving visual details and identity information. Current methods face the challenge of learning accurate lip synchronization while avoiding detrimental effects on visual quality, as well as robustly evaluating such synchronization. To tackle these problems, we propose utilizing an audio-visual speech representation expert (AV-HuBERT) for calculating lip synchronization loss during training. Moreover, leveraging AV-HuBERT's features, we introduce three novel lip synchronization evaluation metrics, aiming to provide a comprehensive assessment of lip synchronization performance. Experimental results, along with a detailed ablation study, demonstrate the effectiveness of our approach and the utility of the proposed evaluation metrics.
- Abstract(参考訳): 顔生成作業では、視覚的詳細と識別情報を保存しつつ、対応する音声に同期した唇付き顔映像を生成する。
現在の手法は、視覚的品質に対する有害な影響を回避しつつ、正確な唇の同期を学習することの難しさと、そのような同期をしっかりと評価することの難しさに直面する。
これらの問題に対処するために、トレーニング中の唇の同期損失を計算するために、音声視覚音声表現エキスパート(AV-HuBERT)を用いることを提案する。
さらに, AV-HuBERTの特徴を活用し, 3つの新しい唇同期評価指標を導入し, 唇同期性能を総合的に評価することを目的とした。
実験結果と詳細なアブレーション実験は,提案手法の有効性と評価指標の有用性を実証するものである。
関連論文リスト
- MuseTalk: Real-Time High Quality Lip Synchronization with Latent Space Inpainting [12.852715177163608]
MuseTalkは、変分オートエンコーダによって符号化された潜時空間でリップシンクターゲットを生成する。
オンラインのフェース生成をサポートする。256x256で30 FPS以上で、起動遅延は無視できる。
論文 参考訳(メタデータ) (2024-10-14T03:22:26Z) - RealTalk: Real-time and Realistic Audio-driven Face Generation with 3D Facial Prior-guided Identity Alignment Network [48.95833484103569]
RealTalkは、音声から表現へのトランスフォーマーであり、高忠実な表現から顔へのフレームワークである。
第1成分として, 口唇運動に関連する個人性および個人内変動の特徴について考察した。
第2のコンポーネントでは、軽量な顔認証アライメント(FIA)モジュールを設計する。
この新しい設計により、高度で非効率な特徴アライメントモジュールに依存することなく、リアルタイムに細部を生成できる。
論文 参考訳(メタデータ) (2024-06-26T12:09:59Z) - SwapTalk: Audio-Driven Talking Face Generation with One-Shot Customization in Latent Space [13.59798532129008]
我々は,同じ潜在空間における顔交換と唇同期の両タスクを実現する,革新的な統一フレームワークSwapTalkを提案する。
生成した顔ビデオの時系列上でのアイデンティティ一貫性をより包括的に評価するための新しいアイデンティティ一貫性指標を提案する。
HDTF実験の結果,ビデオ品質,リップ同期精度,顔スワップの忠実度,アイデンティティの整合性など,既存の手法をはるかに上回っていることがわかった。
論文 参考訳(メタデータ) (2024-05-09T09:22:09Z) - SAiD: Speech-driven Blendshape Facial Animation with Diffusion [6.4271091365094515]
大規模なビジュアルオーディオデータセットが不足しているため、音声駆動の3D顔アニメーションは困難である。
拡散モデル (SAiD) を用いた音声駆動型3次元顔アニメーションを提案する。
論文 参考訳(メタデータ) (2023-12-25T04:40:32Z) - Audio-driven Talking Face Generation with Stabilized Synchronization Loss [60.01529422759644]
トーキング・フェイスジェネレーションは、正確な唇の同期と高い視覚的品質でリアルなビデオを作成することを目的としている。
まずサイレント・リップ・ジェネレータを導入することでリップリーク問題に対処する。
実験の結果,我々のモデルは視覚的品質と唇の同期の両方において最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2023-07-18T15:50:04Z) - Seeing What You Said: Talking Face Generation Guided by a Lip Reading
Expert [89.07178484337865]
音声合成は、コヒーレントな音声入力が与えられた唇に関する顔の動きを再構成する。
従来の研究では、唇音の同期と視覚的品質が重要であった。
そこで我々は, 唇読解の専門家を用いて, 生成した唇領域の知性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-29T07:51:07Z) - SimulLR: Simultaneous Lip Reading Transducer with Attention-Guided
Adaptive Memory [61.44510300515693]
注意誘導型適応メモリを用いた同時唇読解用トランスデューサSimulLRについて検討した。
実験の結果、SimulLRは最先端の非同期手法に比べて9.10倍の高速化を実現していることがわかった。
論文 参考訳(メタデータ) (2021-08-31T05:54:16Z) - Mutual Information Maximization for Effective Lip Reading [99.11600901751673]
本稿では,局所的特徴レベルとグローバルなシーケンスレベルの両方について,相互情報制約を導入することを提案する。
これら2つの利点を組み合わせることで, 有効な唇読解法として, 識別性と頑健性の両方が期待できる。
論文 参考訳(メタデータ) (2020-03-13T18:47:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。