DistGrid: Scalable Scene Reconstruction with Distributed Multi-resolution Hash Grid
- URL: http://arxiv.org/abs/2405.04416v2
- Date: Wed, 8 May 2024 14:27:52 GMT
- Title: DistGrid: Scalable Scene Reconstruction with Distributed Multi-resolution Hash Grid
- Authors: Sidun Liu, Peng Qiao, Zongxin Ye, Wenyu Li, Yong Dou,
- Abstract summary: We propose a scalable scene reconstruction method based on joint Multi-resolution Hash Grids, named DistGrid.
Our method outperforms existing methods on all evaluated large-scale scenes, and provides visually plausible scene reconstruction.
- Score: 10.458776364195796
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural Radiance Field~(NeRF) achieves extremely high quality in object-scaled and indoor scene reconstruction. However, there exist some challenges when reconstructing large-scale scenes. MLP-based NeRFs suffer from limited network capacity, while volume-based NeRFs are heavily memory-consuming when the scene resolution increases. Recent approaches propose to geographically partition the scene and learn each sub-region using an individual NeRF. Such partitioning strategies help volume-based NeRF exceed the single GPU memory limit and scale to larger scenes. However, this approach requires multiple background NeRF to handle out-of-partition rays, which leads to redundancy of learning. Inspired by the fact that the background of current partition is the foreground of adjacent partition, we propose a scalable scene reconstruction method based on joint Multi-resolution Hash Grids, named DistGrid. In this method, the scene is divided into multiple closely-paved yet non-overlapped Axis-Aligned Bounding Boxes, and a novel segmented volume rendering method is proposed to handle cross-boundary rays, thereby eliminating the need for background NeRFs. The experiments demonstrate that our method outperforms existing methods on all evaluated large-scale scenes, and provides visually plausible scene reconstruction. The scalability of our method on reconstruction quality is further evaluated qualitatively and quantitatively.
Related papers
- Global-guided Focal Neural Radiance Field for Large-scale Scene Rendering [12.272724419136575]
We present a global-guided focal neural radiance field (GF-NeRF) that achieves high-fidelity rendering of large-scale scenes.
Our method achieves high-fidelity, natural rendering results on various types of large-scale datasets.
arXiv Detail & Related papers (2024-03-19T15:45:54Z) - Informative Rays Selection for Few-Shot Neural Radiance Fields [0.3599866690398789]
KeyNeRF is a simple yet effective method for training NeRF in few-shot scenarios by focusing on key informative rays.
Our approach performs favorably against state-of-the-art methods, while requiring minimal changes to existing NeRFs.
arXiv Detail & Related papers (2023-12-29T11:08:19Z) - Adaptive Multi-NeRF: Exploit Efficient Parallelism in Adaptive Multiple
Scale Neural Radiance Field Rendering [3.8200916793910973]
Recent advances in Neural Radiance Fields (NeRF) have demonstrated significant potential for representing 3D scene appearances as implicit neural networks.
However, the lengthy training and rendering process hinders the widespread adoption of this promising technique for real-time rendering applications.
We present an effective adaptive multi-NeRF method designed to accelerate the neural rendering process for large scenes.
arXiv Detail & Related papers (2023-10-03T08:34:49Z) - 3D Reconstruction with Generalizable Neural Fields using Scene Priors [71.37871576124789]
We introduce training generalizable Neural Fields incorporating scene Priors (NFPs)
The NFP network maps any single-view RGB-D image into signed distance and radiance values.
A complete scene can be reconstructed by merging individual frames in the volumetric space WITHOUT a fusion module.
arXiv Detail & Related papers (2023-09-26T18:01:02Z) - Neural Kernel Surface Reconstruction [80.51581494300423]
We present a novel method for reconstructing a 3D implicit surface from a large-scale, sparse, and noisy point cloud.
Our approach builds upon the recently introduced Neural Kernel Fields representation.
arXiv Detail & Related papers (2023-05-31T06:25:18Z) - Grid-guided Neural Radiance Fields for Large Urban Scenes [146.06368329445857]
Recent approaches propose to geographically divide the scene and adopt multiple sub-NeRFs to model each region individually.
An alternative solution is to use a feature grid representation, which is computationally efficient and can naturally scale to a large scene.
We present a new framework that realizes high-fidelity rendering on large urban scenes while being computationally efficient.
arXiv Detail & Related papers (2023-03-24T13:56:45Z) - CLONeR: Camera-Lidar Fusion for Occupancy Grid-aided Neural
Representations [77.90883737693325]
This paper proposes CLONeR, which significantly improves upon NeRF by allowing it to model large outdoor driving scenes observed from sparse input sensor views.
This is achieved by decoupling occupancy and color learning within the NeRF framework into separate Multi-Layer Perceptrons (MLPs) trained using LiDAR and camera data, respectively.
In addition, this paper proposes a novel method to build differentiable 3D Occupancy Grid Maps (OGM) alongside the NeRF model, and leverage this occupancy grid for improved sampling of points along a ray for rendering in metric space.
arXiv Detail & Related papers (2022-09-02T17:44:50Z) - NeRFusion: Fusing Radiance Fields for Large-Scale Scene Reconstruction [50.54946139497575]
We propose NeRFusion, a method that combines the advantages of NeRF and TSDF-based fusion techniques to achieve efficient large-scale reconstruction and photo-realistic rendering.
We demonstrate that NeRFusion achieves state-of-the-art quality on both large-scale indoor and small-scale object scenes, with substantially faster reconstruction than NeRF and other recent methods.
arXiv Detail & Related papers (2022-03-21T18:56:35Z) - InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering [55.70938412352287]
We present an information-theoretic regularization technique for few-shot novel view synthesis based on neural implicit representation.
The proposed approach minimizes potential reconstruction inconsistency that happens due to insufficient viewpoints.
We achieve consistently improved performance compared to existing neural view synthesis methods by large margins on multiple standard benchmarks.
arXiv Detail & Related papers (2021-12-31T11:56:01Z) - PERF: Performant, Explicit Radiance Fields [1.933681537640272]
We present a novel way of approaching image-based 3D reconstruction based on radiance fields.
The problem of volumetric reconstruction is formulated as a non-linear least-squares problem and solved explicitly without the use of neural networks.
arXiv Detail & Related papers (2021-12-10T15:29:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.