S3Former: Self-supervised High-resolution Transformer for Solar PV Profiling
- URL: http://arxiv.org/abs/2405.04489v1
- Date: Tue, 7 May 2024 16:56:21 GMT
- Title: S3Former: Self-supervised High-resolution Transformer for Solar PV Profiling
- Authors: Minh Tran, Adrian De Luis, Haitao Liao, Ying Huang, Roy McCann, Alan Mantooth, Jack Cothren, Ngan Le,
- Abstract summary: We introduce S3Former, designed to segment solar panels from aerial imagery and provide size and location information.
S3Former features a Masked Attention Mask Transformer incorporating a self-supervised learning pretrained backbone.
We evaluate S3Former using diverse datasets, demonstrate improvement state-of-the-art models.
- Score: 6.646508986504754
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As the impact of climate change escalates, the global necessity to transition to sustainable energy sources becomes increasingly evident. Renewable energies have emerged as a viable solution for users, with Photovoltaic energy being a favored choice for small installations due to its reliability and efficiency. Accurate mapping of PV installations is crucial for understanding the extension of its adoption and informing energy policy. To meet this need, we introduce S3Former, designed to segment solar panels from aerial imagery and provide size and location information critical for analyzing the impact of such installations on the grid. Solar panel identification is challenging due to factors such as varying weather conditions, roof characteristics, Ground Sampling Distance variations and lack of appropriate initialization weights for optimized training. To tackle these complexities, S3Former features a Masked Attention Mask Transformer incorporating a self-supervised learning pretrained backbone. Specifically, our model leverages low-level and high-level features extracted from the backbone and incorporates an instance query mechanism incorporated on the Transformer architecture to enhance the localization of solar PV installations. We introduce a self-supervised learning phase (pretext task) to improve the initialization weights on the backbone of S3Former. We evaluated S3Former using diverse datasets, demonstrate improvement state-of-the-art models.
Related papers
- Solar Panel Segmentation :Self-Supervised Learning Solutions for Imperfect Datasets [0.0]
This paper addresses the challenges in panel segmentation, particularly the scarcity of annotated data and the labour-intensive nature of manual annotation for supervised learning.
We explore and apply Self-Supervised Learning (SSL) to solve these challenges.
arXiv Detail & Related papers (2024-02-20T09:13:11Z) - FusionSF: Fuse Heterogeneous Modalities in a Vector Quantized Framework
for Robust Solar Power Forecasting [24.57911612111109]
We propose a multi-modality fusion framework to integrate historical power data, numerical weather prediction, and satellite images.
Our framework demonstrates strong zero-shot forecasting capability, which is especially useful for those newly installed plants.
Our model not only operates with robustness but also boosts accuracy in both zero-shot forecasting and scenarios rich with training data, surpassing leading models.
arXiv Detail & Related papers (2024-02-08T17:03:10Z) - SolarFormer: Multi-scale Transformer for Solar PV Profiling [7.686020113962378]
SolarFormer is designed to segment solar panels from aerial imagery, offering insights into their location and size.
Our model leverages low-level features and incorporates an instance query mechanism to enhance the localization of solar PV installations.
Our experiments consistently demonstrate that our model either matches or surpasses state-of-the-art models.
arXiv Detail & Related papers (2023-10-30T22:22:01Z) - Can We Reliably Improve the Robustness to Image Acquisition of Remote
Sensing of PV Systems? [0.8192907805418583]
Remote sensing of rooftop PV installations is the best option to monitor the evolution of the rooftop PV installed fleet at a regional scale.
We leverage the wavelet scale attribution method (WCAM), which decomposes a model's prediction in the space-scale domain.
The WCAM enables us to assess on which scales the representation of a PV model rests and provides insights to derive methods that improve the robustness to acquisition conditions.
arXiv Detail & Related papers (2023-09-21T16:15:56Z) - Isomer: Isomerous Transformer for Zero-shot Video Object Segmentation [59.91357714415056]
We propose two Transformer variants: Context-Sharing Transformer (CST) and Semantic Gathering-Scattering Transformer (S GST)
CST learns the global-shared contextual information within image frames with a lightweight computation; S GST models the semantic correlation separately for the foreground and background.
Compared with the baseline that uses vanilla Transformers for multi-stage fusion, ours significantly increase the speed by 13 times and achieves new state-of-the-art ZVOS performance.
arXiv Detail & Related papers (2023-08-13T06:12:00Z) - Improving day-ahead Solar Irradiance Time Series Forecasting by
Leveraging Spatio-Temporal Context [46.72071291175356]
Solar power harbors immense potential in mitigating climate change by substantially reducing CO$_2$ emissions.
However, the inherent variability of solar irradiance poses a significant challenge for seamlessly integrating solar power into the electrical grid.
In this paper, we put forth a deep learning architecture designed to harnesstemporal context using satellite data.
arXiv Detail & Related papers (2023-06-01T19:54:39Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
This work investigates capabilities of current state-of-the-art generative models to accurately capture the data distribution behind observed solar activity states.
Using distributed training on supercomputers, we are able to train generative models for up to 1024x1024 resolution that produce high quality samples indistinguishable to human experts.
arXiv Detail & Related papers (2023-04-14T14:40:32Z) - Computational Solar Energy -- Ensemble Learning Methods for Prediction
of Solar Power Generation based on Meteorological Parameters in Eastern India [0.0]
It is important to estimate the amount of solar photovoltaic (PV) power generation for a specific geographical location.
In this paper, the impact of weather parameters on solar PV power generation is estimated by several Ensemble ML (EML) models like Bagging, Boosting, Stacking, and Voting.
The results demonstrate greater prediction accuracy of around 96% for Stacking and Voting models.
arXiv Detail & Related papers (2023-01-21T19:16:03Z) - SIM-Trans: Structure Information Modeling Transformer for Fine-grained
Visual Categorization [59.732036564862796]
We propose the Structure Information Modeling Transformer (SIM-Trans) to incorporate object structure information into transformer for enhancing discriminative representation learning.
The proposed two modules are light-weighted and can be plugged into any transformer network and trained end-to-end easily.
Experiments and analyses demonstrate that the proposed SIM-Trans achieves state-of-the-art performance on fine-grained visual categorization benchmarks.
arXiv Detail & Related papers (2022-08-31T03:00:07Z) - Three things everyone should know about Vision Transformers [67.30250766591405]
transformer architectures have rapidly gained traction in computer vision.
We offer three insights based on simple and easy to implement variants of vision transformers.
We evaluate the impact of these design choices using the ImageNet-1k dataset, and confirm our findings on the ImageNet-v2 test set.
arXiv Detail & Related papers (2022-03-18T08:23:03Z) - HyperTransformer: A Textural and Spectral Feature Fusion Transformer for
Pansharpening [60.89777029184023]
Pansharpening aims to fuse a registered high-resolution panchromatic image (PAN) with a low-resolution hyperspectral image (LR-HSI) to generate an enhanced HSI with high spectral and spatial resolution.
Existing pansharpening approaches neglect using an attention mechanism to transfer HR texture features from PAN to LR-HSI features, resulting in spatial and spectral distortions.
We present a novel attention mechanism for pansharpening called HyperTransformer, in which features of LR-HSI and PAN are formulated as queries and keys in a transformer, respectively.
arXiv Detail & Related papers (2022-03-04T18:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.