Resource-Efficient and Self-Adaptive Quantum Search in a Quantum-Classical Hybrid System
- URL: http://arxiv.org/abs/2405.04490v1
- Date: Tue, 7 May 2024 17:00:19 GMT
- Title: Resource-Efficient and Self-Adaptive Quantum Search in a Quantum-Classical Hybrid System
- Authors: Zihao Jiang, Zefan Du, Shaolun Ruan, Juntao Chen, Yong Wang, Long Cheng, Rajkumar Buyya, Ying Mao,
- Abstract summary: We introduce ReSaQuS, a resource-efficient index-value searching system within a quantum-classical hybrid framework.
We show that ReSaQuS has demonstrated a substantial reduction, up to 86.36% in cumulative qubit consumption and 72.72% in active periods.
- Score: 24.67144593838334
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Over the past decade, the rapid advancement of deep learning and big data applications has been driven by vast datasets and high-performance computing systems. However, as we approach the physical limits of semiconductor fabrication in the post-Moore's Law era, questions arise about the future of these applications. In parallel, quantum computing has made significant progress with the potential to break limits. Major companies like IBM, Google, and Microsoft provide access to noisy intermediate-scale quantum (NISQ) computers. Despite the theoretical promise of Shor's and Grover's algorithms, practical implementation on current quantum devices faces challenges, such as demanding additional resources and a high number of controlled operations. To tackle these challenges and optimize the utilization of limited onboard qubits, we introduce ReSaQuS, a resource-efficient index-value searching system within a quantum-classical hybrid framework. Building on Grover's algorithm, ReSaQuS employs an automatically managed iterative search approach. This method analyzes problem size, filters fewer probable data points, and progressively reduces the dataset with decreasing qubit requirements. Implemented using Qiskit and evaluated through extensive experiments, ReSaQuS has demonstrated a substantial reduction, up to 86.36\% in cumulative qubit consumption and 72.72\% in active periods, reinforcing its potential in optimizing quantum computing application deployment.
Related papers
- A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Elastic Entangled Pair and Qubit Resource Management in Quantum Cloud
Computing [73.7522199491117]
Quantum cloud computing (QCC) offers a promising approach to efficiently provide quantum computing resources.
The fluctuations in user demand and quantum circuit requirements are challenging for efficient resource provisioning.
We propose a resource allocation model to provision quantum computing and networking resources.
arXiv Detail & Related papers (2023-07-25T00:38:46Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Preparing random state for quantum financing with quantum walks [1.2074552857379273]
We propose an efficient approach to load classical data into quantum states that can be executed by quantum computers or quantum simulators on classical hardware.
A practical example of implementing SSQW using Qiskit has been released as open-source software.
Showing its potential as a promising method for generating desired probability amplitude distributions highlights the potential application of SSQW in option pricing through quantum simulation.
arXiv Detail & Related papers (2023-02-24T08:01:35Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCS aims at index searching and counting in a quantum-classical hybrid system.
We implement IQuCS with Qiskit and conduct intensive experiments.
Results demonstrate that it reduces qubits consumption by up to 66.2%.
arXiv Detail & Related papers (2022-09-22T21:54:28Z) - Variational Quantum Algorithms [1.9486734911696273]
Quantum computers promise to unlock applications such as large quantum systems or solving large-scale linear algebra problems.
Currently available quantum devices have serious constraints, including limited qubit numbers and noise processes that limit circuit depth.
Variational Quantum Algorithms (VQAs), which employ a classical simulation to train a parametrized quantum circuit, have emerged as a leading strategy to address these constraints.
arXiv Detail & Related papers (2020-12-16T21:00:46Z) - A Hybrid System for Learning Classical Data in Quantum States [13.900722734372254]
We propose GenQu, a hybrid and general-purpose quantum framework for learning classical data through quantum states.
We evaluate GenQu with real datasets and conduct experiments on both simulations and real quantum computer IBM-Q.
arXiv Detail & Related papers (2020-12-01T04:17:33Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - SQUARE: Strategic Quantum Ancilla Reuse for Modular Quantum Programs via
Cost-Effective Uncomputation [7.92565122267857]
We present a compilation infrastructure that tackles allocation and reclamation of scratch qubits (called ancilla) in quantum programs.
At its core, SQUARE strategically performs uncomputation to create opportunities for qubit reuse.
Our results show that SQUARE improves the average success rate of NISQ applications by 1.47X.
arXiv Detail & Related papers (2020-04-18T06:34:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.