New allometric models for the USA create a step-change in forest carbon estimation, modeling, and mapping
- URL: http://arxiv.org/abs/2405.04507v1
- Date: Tue, 7 May 2024 17:38:39 GMT
- Title: New allometric models for the USA create a step-change in forest carbon estimation, modeling, and mapping
- Authors: Lucas K. Johnson, Michael J. Mahoney, Grant Domke, Colin M. Beier,
- Abstract summary: The U.S. national forest inventory (NFI) serves as the foundation for forest aboveground biomass (AGB) and carbon accounting across the nation.
In late 2023 the Forest Inventory and Analysis (FIA) program introduced a new National Scale Volume and Biomass Estimators (NSVB) system to replace the Component Ratio Method.
Given the prevalence of model-based AGB studies relying on FIA, there is concern about the transferability of methods from CRM to NSVB.
We show that models relying on passive satellite imagery provide acceptable estimates of point-in-time NSVB AGB and carbon
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The United States national forest inventory (NFI) serves as the foundation for forest aboveground biomass (AGB) and carbon accounting across the nation. These data enable design-based estimates of forest carbon stocks and stock-changes at state and regional levels, but also serve as inputs to model-based approaches for characterizing forest carbon stocks and stock-changes at finer resolutions. Although NFI tree and plot-level data are often treated as truth in these models, they are in fact estimates based on regional species-group models known collectively as the Component Ratio Method (CRM). In late 2023 the Forest Inventory and Analysis (FIA) program introduced a new National Scale Volume and Biomass Estimators (NSVB) system to replace CRM nationwide and offer more precise and accurate representations of forest AGB and carbon. Given the prevalence of model-based AGB studies relying on FIA, there is concern about the transferability of methods from CRM to NSVB models, as well as the comparability of existing CRM AGB products (e.g. maps) to new and forthcoming NSVB AGB products. To begin addressing these concerns we compared previously published CRM AGB maps to new maps produced using identical methods with NSVB AGB reference data. Our results suggest that models relying on passive satellite imagery (e.g. Landsat) provide acceptable estimates of point-in-time NSVB AGB and carbon stocks, but fail to accurately quantify growth in mature closed-canopy forests. We highlight that existing estimates, models, and maps based on FIA reference data are no longer compatible with NSVB, and recommend new methods as well as updated models and maps for accommodating this step-change. Our collective ability to adopt NSVB in our modeling and mapping workflows will help us provide the most accurate spatial forest carbon data possible in order to better inform local management and decision making.
Related papers
- Machine Learning for Methane Detection and Quantification from Space -- A survey [49.7996292123687]
Methane (CH_4) is a potent anthropogenic greenhouse gas, contributing 86 times more to global warming than Carbon Dioxide (CO_2) over 20 years.
This work expands existing information on operational methane point source detection sensors in the Short-Wave Infrared (SWIR) bands.
It reviews the state-of-the-art for traditional as well as Machine Learning (ML) approaches.
arXiv Detail & Related papers (2024-08-27T15:03:20Z) - Fine-tuning of Geospatial Foundation Models for Aboveground Biomass Estimation [2.3429628556845405]
Fine-tuning of a geospatial foundation model to estimate above-ground biomass has comparable performance to a U-Net trained from scratch.
We also explore the transfer-learning capabilities of the models by fine-tuning on satellite imagery with sparse labels from different eco-regions in Brazil.
arXiv Detail & Related papers (2024-06-28T12:54:10Z) - FedGreen: Carbon-aware Federated Learning with Model Size Adaptation [36.283273000969636]
Federated learning (FL) provides a promising collaborative framework to build a model from distributed clients.
Cloud and edge servers hosting FL clients may exhibit diverse carbon footprints influenced by their geographical locations with varying power sources.
We propose FedGreen, a carbon-aware FL approach to efficiently train models by adopting adaptive model sizes shared with clients.
arXiv Detail & Related papers (2024-04-23T20:37:26Z) - Mapping historical forest biomass for stock-change assessments at parcel
to landscape scales [0.0]
Map products can help identify where, when, and how forest carbon stocks are changing as a result of both anthropogenic and natural drivers alike.
These products can thus serve as inputs to a wide range of applications including stock-change assessments, monitoring reporting, and verification frameworks.
arXiv Detail & Related papers (2023-04-05T17:55:00Z) - Real-time high-resolution CO$_2$ geological storage prediction using
nested Fourier neural operators [58.728312684306545]
Carbon capture and storage (CCS) plays an essential role in global decarbonization.
Scaling up CCS deployment requires accurate and high-resolution modeling of the storage reservoir pressure buildup and the gaseous plume migration.
We introduce Nested Fourier Neural Operator (FNO), a machine-learning framework for high-resolution dynamic 3D CO2 storage modeling at a basin scale.
arXiv Detail & Related papers (2022-10-31T04:04:03Z) - Neuroevolution-based Classifiers for Deforestation Detection in Tropical
Forests [62.997667081978825]
Millions of hectares of tropical forests are lost every year due to deforestation or degradation.
Monitoring and deforestation detection programs are in use, in addition to public policies for the prevention and punishment of criminals.
This paper proposes the use of pattern classifiers based on neuroevolution technique (NEAT) in tropical forest deforestation detection tasks.
arXiv Detail & Related papers (2022-08-23T16:04:12Z) - Measuring the Carbon Intensity of AI in Cloud Instances [91.28501520271972]
We provide a framework for measuring software carbon intensity, and propose to measure operational carbon emissions.
We evaluate a suite of approaches for reducing emissions on the Microsoft Azure cloud compute platform.
arXiv Detail & Related papers (2022-06-10T17:04:04Z) - ReforesTree: A Dataset for Estimating Tropical Forest Carbon Stock with
Deep Learning and Aerial Imagery [19.216734550056817]
ReforesTree is a benchmark dataset of forest carbon stock in six agro-forestry carbon offsetting sites in Ecuador.
We show that a deep learning-based end-to-end model using individual tree detection from low cost RGB-only drone imagery is accurately estimating forest carbon stock within official carbon offsetting certification standards.
arXiv Detail & Related papers (2022-01-26T21:27:57Z) - Deep Learning Based 3D Point Cloud Regression for Estimating Forest
Biomass [15.956463815168034]
Knowledge of forest biomass stocks and their development is important for implementing effective climate change mitigation measures.
Remote sensing using airborne LiDAR can be used to measure vegetation biomass at large scale.
We present deep learning systems for predicting wood volume, above-ground biomass (AGB), and subsequently carbon directly from 3D LiDAR point cloud data.
arXiv Detail & Related papers (2021-12-21T16:26:13Z) - Deep Learning Based Cloud Cover Parameterization for ICON [55.49957005291674]
We train NN based cloud cover parameterizations with coarse-grained data based on realistic regional and global ICON simulations.
Globally trained NNs can reproduce sub-grid scale cloud cover of the regional simulation.
We identify an overemphasis on specific humidity and cloud ice as the reason why our column-based NN cannot perfectly generalize from the global to the regional coarse-grained data.
arXiv Detail & Related papers (2021-12-21T16:10:45Z) - Country-wide Retrieval of Forest Structure From Optical and SAR
Satellite Imagery With Bayesian Deep Learning [74.94436509364554]
We propose a Bayesian deep learning approach to densely estimate forest structure variables at country-scale with 10-meter resolution.
Our method jointly transforms Sentinel-2 optical images and Sentinel-1 synthetic aperture radar images into maps of five different forest structure variables.
We train and test our model on reference data from 41 airborne laser scanning missions across Norway.
arXiv Detail & Related papers (2021-11-25T16:21:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.