論文の概要: NaturalCodeBench: Examining Coding Performance Mismatch on HumanEval and Natural User Prompts
- arxiv url: http://arxiv.org/abs/2405.04520v1
- Date: Tue, 7 May 2024 17:52:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 13:11:46.813392
- Title: NaturalCodeBench: Examining Coding Performance Mismatch on HumanEval and Natural User Prompts
- Title(参考訳): NaturalCodeBench: 人間のEvalとNatural User Prompt上でのコーディングパフォーマンスのミスマッチを調べる
- Authors: Shudan Zhang, Hanlin Zhao, Xiao Liu, Qinkai Zheng, Zehan Qi, Xiaotao Gu, Xiaohan Zhang, Yuxiao Dong, Jie Tang,
- Abstract要約: NaturalCodeBench (NCB) は、実際のコーディングタスクにおける複雑さと様々なシナリオを反映した、挑戦的なコードベンチマークである。
NCBは、PythonとJavaの402の高品質な問題で構成されており、オンラインコーディングサービスからの自然なユーザクエリから慎重に選択されている。
39 LLMの系統的実験により,NCBにおけるHumanEvalスコアが近いモデル間の性能ギャップが依然として大きいことが判明した。
- 参考スコア(独自算出の注目度): 31.783388267874738
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have manifested strong ability to generate codes for productive activities. However, current benchmarks for code synthesis, such as HumanEval, MBPP, and DS-1000, are predominantly oriented towards introductory tasks on algorithm and data science, insufficiently satisfying challenging requirements prevalent in real-world coding. To fill this gap, we propose NaturalCodeBench (NCB), a challenging code benchmark designed to mirror the complexity and variety of scenarios in real coding tasks. NCB comprises 402 high-quality problems in Python and Java, meticulously selected from natural user queries from online coding services, covering 6 different domains. Noting the extraordinary difficulty in creating testing cases for real-world queries, we also introduce a semi-automated pipeline to enhance the efficiency of test case construction. Comparing with manual solutions, it achieves an efficiency increase of more than 4 times. Our systematic experiments on 39 LLMs find that performance gaps on NCB between models with close HumanEval scores could still be significant, indicating a lack of focus on practical code synthesis scenarios or over-specified optimization on HumanEval. On the other hand, even the best-performing GPT-4 is still far from satisfying on NCB. The evaluation toolkit and development set are available at https://github.com/THUDM/NaturalCodeBench.
- Abstract(参考訳): 大規模言語モデル(LLM)は、生産活動のためのコードを生成する強力な能力を示している。
しかし、HumanEval、MBPP、DS-1000といったコード合成のための現在のベンチマークは、主にアルゴリズムとデータサイエンスの入門的なタスクに向けられており、現実世界のコーディングで発生する困難な要件を十分に満たしていない。
このギャップを埋めるために、実際のコーディングタスクにおける複雑さとさまざまなシナリオを反映した、挑戦的なコードベンチマークであるNaturalCodeBench(NCB)を提案する。
NCBは、PythonとJavaの402の高品質な問題で構成されており、6つの異なるドメインをカバーするオンラインコーディングサービスからの自然なユーザクエリから慎重に選択されている。
実世界のクエリでテストケースを作成することの難しさに言及し、テストケース構築の効率を高めるための半自動パイプラインも導入する。
手動のソリューションと比較すると、効率は4倍以上に向上する。
39 LLM の系統的な実験から,HumanEval のスコアが近いモデル間の NCB のパフォーマンスギャップは依然として重要であり,実際のコード合成シナリオやHumanEval の過度な最適化に焦点が当てられていないことが示唆された。
一方、最高性能の GPT-4 でさえ NCB では満足できない。
評価ツールキットと開発セットはhttps://github.com/THUDM/NaturalCodeBench.comで入手できる。
関連論文リスト
- CodeTree: Agent-guided Tree Search for Code Generation with Large Language Models [106.11371409170818]
大規模言語モデル(LLM)は、生成されたコードを自己定義し、自律的に改善する機能を持つエージェントとして機能する。
コード生成プロセスの異なる段階における探索空間を効率的に探索するLLMエージェントのためのフレームワークであるCodeTreeを提案する。
具体的には、異なるコーディング戦略を明示的に探求し、対応するコーディングソリューションを生成し、その後、ソリューションを洗練するために統合されたツリー構造を採用しました。
論文 参考訳(メタデータ) (2024-11-07T00:09:54Z) - CodeDPO: Aligning Code Models with Self Generated and Verified Source Code [52.70310361822519]
我々は、コード生成に好み学習を統合するフレームワークであるCodeDPOを提案し、コードの正確性と効率性という2つの重要なコード優先要因を改善した。
CodeDPOは、コードとテストケースを同時に生成、評価するセルフジェネレーション・アンド・バリデーションメカニズムを利用して、新しいデータセット構築方法を採用している。
論文 参考訳(メタデータ) (2024-10-08T01:36:15Z) - MapCoder: Multi-Agent Code Generation for Competitive Problem Solving [3.3856216159724983]
マルチエージェントプロンプトを利用したコード生成タスクに新たなアプローチを導入する。
私たちのフレームワークであるMapCoderは、プログラム合成の段階をエミュレートするために設計された4つのLLMエージェントで構成されています。
我々の手法は、様々なプログラミング言語で一貫して優れた性能を提供する。
論文 参考訳(メタデータ) (2024-05-18T22:10:15Z) - Low-Cost Language Models: Survey and Performance Evaluation on Python Code Generation [0.0]
大規模言語モデル(LLM)は多くの自然言語処理(NLP)タスクで一般的な選択肢となっている。
LLMの相当な計算とメモリ要件は、限られたリソースを持つユーザーにはアクセスできないことが多い。
本稿では,資源集約型LLMの代替となる,非常に低コストなモデルに焦点をあてる。
論文 参考訳(メタデータ) (2024-04-17T08:16:48Z) - InfiBench: Evaluating the Question-Answering Capabilities of Code Large Language Models [56.723509505549536]
InfiBenchは、私たちの知識に合ったコードのための、最初の大規模フリーフォーム質問回答(QA)ベンチマークです。
慎重に選択された234の高品質なStack Overflow質問で構成されており、15のプログラミング言語にまたがっている。
InfiBench上で100以上の最新のコードLLMに対して,系統的評価を行い,新しい知見と洞察に富んだ結果を得た。
論文 参考訳(メタデータ) (2024-03-11T02:06:30Z) - Testing LLMs on Code Generation with Varying Levels of Prompt
Specificity [0.0]
大規模言語モデル (LLM) は、人間のようなテキスト生成と処理を模倣する非並列的な技術を示している。
自然言語のプロンプトを実行可能なコードに変換する可能性は、ソフトウェア開発プラクティスの大きな変化を約束します。
論文 参考訳(メタデータ) (2023-11-10T23:41:41Z) - Learning Performance-Improving Code Edits [107.21538852090208]
本稿では,大規模言語モデル(LLM)を高レベルプログラム最適化に適用するためのフレームワークを提案する。
まず、競争力のある77,000以上のC++プログラミングサブミッションペアによる、人間のプログラマによるパフォーマンス改善編集のデータセットをキュレートする。
提案手法は,検索をベースとした少数ショットプロンプトとチェーン・オブ・シンクレットを提案し,その微調整には,自己再生に基づく性能条件付き生成と合成データ拡張が含まれる。
論文 参考訳(メタデータ) (2023-02-15T18:59:21Z) - Fast Bayesian Optimization of Needle-in-a-Haystack Problems using
Zooming Memory-Based Initialization [73.96101108943986]
Needle-in-a-Haystack問題は、データセットのサイズに対して最適な条件が極端に不均衡であるときに発生する。
本稿では,従来のベイズ最適化原理に基づくズームメモリに基づく初期化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-08-26T23:57:41Z) - Measuring Coding Challenge Competence With APPS [54.22600767666257]
コード生成のベンチマークであるAPPSを紹介する。
私たちのベンチマークには1万の問題が含まれています。
GPT-Neoのような最近のモデルでは、導入問題のテストケースの約15%をパスできる。
論文 参考訳(メタデータ) (2021-05-20T17:58:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。