論文の概要: Testing LLMs on Code Generation with Varying Levels of Prompt
Specificity
- arxiv url: http://arxiv.org/abs/2311.07599v1
- Date: Fri, 10 Nov 2023 23:41:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-15 17:10:40.379638
- Title: Testing LLMs on Code Generation with Varying Levels of Prompt
Specificity
- Title(参考訳): プロンプト特異度の異なるコード生成におけるLCMのテスト
- Authors: Lincoln Murr, Morgan Grainger, David Gao
- Abstract要約: 大規模言語モデル (LLM) は、人間のようなテキスト生成と処理を模倣する非並列的な技術を示している。
自然言語のプロンプトを実行可能なコードに変換する可能性は、ソフトウェア開発プラクティスの大きな変化を約束します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have demonstrated unparalleled prowess in
mimicking human-like text generation and processing. Among the myriad of
applications that benefit from LLMs, automated code generation is increasingly
promising. The potential to transform natural language prompts into executable
code promises a major shift in software development practices and paves the way
for significant reductions in manual coding efforts and the likelihood of
human-induced errors. This paper reports the results of a study that evaluates
the performance of various LLMs, such as Bard, ChatGPT-3.5, ChatGPT-4, and
Claude-2, in generating Python for coding problems. We focus on how levels of
prompt specificity impact the accuracy, time efficiency, and space efficiency
of the generated code. A benchmark of 104 coding problems, each with four types
of prompts with varying degrees of tests and specificity, was employed to
examine these aspects comprehensively. Our results indicate significant
variations in performance across different LLMs and prompt types, and its key
contribution is to reveal the ideal prompting strategy for creating accurate
Python functions. This study lays the groundwork for further research in LLM
capabilities and suggests practical implications for utilizing LLMs in
automated code generation tasks and test-driven development.
- Abstract(参考訳): 大規模言語モデル (LLM) は、人間のようなテキスト生成と処理を模倣する非並列的な技術を示している。
LLMの恩恵を受ける無数のアプリケーションの中で、自動コード生成はますます有望になっている。
自然言語のプロンプトを実行可能なコードに変換する可能性は、ソフトウェア開発プラクティスに大きな変化をもたらし、手作業によるコーディング作業の大幅な削減と、人間によるエラーの可能性を秘めている。
本稿では,コーディング問題に対するpython生成におけるbard,chatgpt-3.5,chatgpt-4,claude-2などの様々なllmの性能評価を行った。
我々は、生成したコードの精度、時間効率、空間効率に、迅速な特異性のレベルがどのように影響するかに焦点を当てる。
テストの程度や特異性の異なる4種類のプロンプトを持つ104のコーディング問題のベンチマークを用いて,これらの側面を網羅的に検討した。
以上の結果から,異なるLLMおよびプロンプト型にまたがる性能の著しい変化が示唆され,その重要な貢献は,正確なPython関数を生成する上での理想的なプロンプト戦略を明らかにすることである。
本研究は、LLM機能に関するさらなる研究の基盤を築き、自動コード生成タスクやテスト駆動開発にLLMを活用するための実践的意義を提案する。
関連論文リスト
- Crystal: Illuminating LLM Abilities on Language and Code [58.5467653736537]
本稿では,自然言語と符号化機能の統合性を高めるための事前学習戦略を提案する。
結果のモデルであるCrystalは、両方のドメインで顕著な能力を示します。
論文 参考訳(メタデータ) (2024-11-06T10:28:46Z) - Source Code Summarization in the Era of Large Language Models [23.715005053430957]
大規模言語モデル(LLM)は、コード関連のタスクのパフォーマンスを大幅に向上させた。
本稿では,LLMにおけるコード要約の体系的および包括的研究を行う。
論文 参考訳(メタデータ) (2024-07-09T05:48:42Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - BigCodeBench: Benchmarking Code Generation with Diverse Function Calls and Complex Instructions [72.56339136017759]
BigCodeBenchは、大規模言語モデル(LLM)に対して、139のライブラリと7つのドメインから1140のきめ細かいタスクに対して、複数の関数呼び出しをツールとして呼び出すためのベンチマークである。
評価の結果,LLMは機能コールを正確に使用するための複雑な指示に従うことができず,スコアは最大60%,人的性能は97%と極めて低いことがわかった。
そこで本研究では,BigCodeBench-Instructという自然言語指向の変種を提案する。
論文 参考訳(メタデータ) (2024-06-22T15:52:04Z) - Validating LLM-Generated Programs with Metamorphic Prompt Testing [8.785973653167112]
大規模言語モデル(LLM)は、ソフトウェア開発ライフサイクルにますます統合されています。
本稿では,これらの課題に対処するため,メタモルフィック・プロンプト・テストと呼ばれる新しい手法を提案する。
我々のHumanEvalに対する評価は,GPT-4が生成する誤プログラムの75%を,偽陽性率8.6%で検出できることを示す。
論文 参考訳(メタデータ) (2024-06-11T00:40:17Z) - Code Prompting Elicits Conditional Reasoning Abilities in Text+Code LLMs [65.2379940117181]
自然言語の問題をコードに変換する一連のプロンプトであるコードプロンプトを導入します。
コードプロンプトは複数のLLMに対して高速に向上することがわかった。
GPT 3.5を解析した結果,入力問題のコードフォーマッティングが性能向上に不可欠であることが判明した。
論文 参考訳(メタデータ) (2024-01-18T15:32:24Z) - Mutation-based Consistency Testing for Evaluating the Code Understanding
Capability of LLMs [5.549095839198671]
大きな言語モデル(LLM)は、自然言語とプログラミング言語の両方を処理する際、顕著な能力を示している。
本稿では,LLMのコード理解性能を評価する新しい手法を提案し,特にコードと記述の微妙な差異に着目した。
演算子置換やステートメント削除など,さまざまなタイプのコード突然変異を適用して,一貫性のないコード記述ペアを生成する。
我々は,現在最先端のコード生成ベンチマークであるHumanEval-Xを用いて,GPT-3.5とGPT-4の2つのLLMのケーススタディを行う。
論文 参考訳(メタデータ) (2024-01-11T14:27:43Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - Test-Case-Driven Programming Understanding in Large Language Models for
Better Code Generation [15.166827643436346]
muFiXは、大きな言語モデル(LLM)のコード生成性能を改善する新しいプロンプト技術である。
まず、テストケース分析を利用して仕様の理解を得、自己改善プロセスを可能にする。
muFiXはさらに、提供された理解と実際の理解の間のギャップを減らす方向に向けた仕様理解を修正している。
論文 参考訳(メタデータ) (2023-09-28T02:58:07Z) - CodeApex: A Bilingual Programming Evaluation Benchmark for Large
Language Models [43.655927559990616]
我々は,LLMのプログラミング理解,コード生成,コード修正能力に着目したベンチマークデータセットであるCodeApexを提案する。
汎用モデルと特化モデルの両方を含む,広く使用されているLLMを12種類評価した。
GPT-4は最高のプログラミング能力を示し、それぞれ69%、54%、66%の精度を達成している。
論文 参考訳(メタデータ) (2023-09-05T04:12:01Z) - LEVER: Learning to Verify Language-to-Code Generation with Execution [64.36459105535]
本稿では,プログラムの実行結果の検証を学習することで,言語からコードへの生成を改善するシンプルな手法であるLEVERを提案する。
具体的には、LLMからサンプリングされたプログラムが、自然言語入力、プログラム自体とその実行結果に基づいて正しいか否かを判定するために、検証者を訓練する。
LEVER はベースコード LLMs (4.6% から 10.9% まで) を継続的に改善し、それらすべてに対して新しい最先端の結果を得る。
論文 参考訳(メタデータ) (2023-02-16T18:23:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。