An intuitive multi-frequency feature representation for SO(3)-equivariant networks
- URL: http://arxiv.org/abs/2405.04537v1
- Date: Fri, 15 Mar 2024 11:36:50 GMT
- Title: An intuitive multi-frequency feature representation for SO(3)-equivariant networks
- Authors: Dongwon Son, Jaehyung Kim, Sanghyeon Son, Beomjoon Kim,
- Abstract summary: We introduce an equivariant feature representation for mapping a 3D point to a high-dimensional feature space.
Our representation can be used as an input to VNs, and the results demonstrate that with our feature representation, VN captures more details.
- Score: 9.092163300680832
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The usage of 3D vision algorithms, such as shape reconstruction, remains limited because they require inputs to be at a fixed canonical rotation. Recently, a simple equivariant network, Vector Neuron (VN) has been proposed that can be easily used with the state-of-the-art 3D neural network (NN) architectures. However, its performance is limited because it is designed to use only three-dimensional features, which is insufficient to capture the details present in 3D data. In this paper, we introduce an equivariant feature representation for mapping a 3D point to a high-dimensional feature space. Our feature can discern multiple frequencies present in 3D data, which is the key to designing an expressive feature for 3D vision tasks. Our representation can be used as an input to VNs, and the results demonstrate that with our feature representation, VN captures more details, overcoming the limitation raised in its original paper.
Related papers
- DatasetNeRF: Efficient 3D-aware Data Factory with Generative Radiance Fields [68.94868475824575]
This paper introduces a novel approach capable of generating infinite, high-quality 3D-consistent 2D annotations alongside 3D point cloud segmentations.
We leverage the strong semantic prior within a 3D generative model to train a semantic decoder.
Once trained, the decoder efficiently generalizes across the latent space, enabling the generation of infinite data.
arXiv Detail & Related papers (2023-11-18T21:58:28Z) - Neural Feature Fusion Fields: 3D Distillation of Self-Supervised 2D
Image Representations [92.88108411154255]
We present a method that improves dense 2D image feature extractors when the latter are applied to the analysis of multiple images reconstructible as a 3D scene.
We show that our method not only enables semantic understanding in the context of scene-specific neural fields without the use of manual labels, but also consistently improves over the self-supervised 2D baselines.
arXiv Detail & Related papers (2022-09-07T23:24:09Z) - SRCN3D: Sparse R-CNN 3D for Compact Convolutional Multi-View 3D Object
Detection and Tracking [12.285423418301683]
This paper proposes Sparse R-CNN 3D (SRCN3D), a novel two-stage fully-sparse detector that incorporates sparse queries, sparse attention with box-wise sampling, and sparse prediction.
Experiments on nuScenes dataset demonstrate that SRCN3D achieves competitive performance in both 3D object detection and multi-object tracking tasks.
arXiv Detail & Related papers (2022-06-29T07:58:39Z) - SNAKE: Shape-aware Neural 3D Keypoint Field [62.91169625183118]
Detecting 3D keypoints from point clouds is important for shape reconstruction.
This work investigates the dual question: can shape reconstruction benefit 3D keypoint detection?
We propose a novel unsupervised paradigm named SNAKE, which is short for shape-aware neural 3D keypoint field.
arXiv Detail & Related papers (2022-06-03T17:58:43Z) - HVPR: Hybrid Voxel-Point Representation for Single-stage 3D Object
Detection [39.64891219500416]
3D object detection methods exploit either voxel-based or point-based features to represent 3D objects in a scene.
We introduce in this paper a novel single-stage 3D detection method having the merit of both voxel-based and point-based features.
arXiv Detail & Related papers (2021-04-02T06:34:49Z) - Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D
Shapes [77.6741486264257]
We introduce an efficient neural representation that, for the first time, enables real-time rendering of high-fidelity neural SDFs.
We show that our representation is 2-3 orders of magnitude more efficient in terms of rendering speed compared to previous works.
arXiv Detail & Related papers (2021-01-26T18:50:22Z) - Exploring Deep 3D Spatial Encodings for Large-Scale 3D Scene
Understanding [19.134536179555102]
We propose an alternative approach to overcome the limitations of CNN based approaches by encoding the spatial features of raw 3D point clouds into undirected graph models.
The proposed method achieves on par state-of-the-art accuracy with improved training time and model stability thus indicating strong potential for further research.
arXiv Detail & Related papers (2020-11-29T12:56:19Z) - SpinNet: Learning a General Surface Descriptor for 3D Point Cloud
Registration [57.28608414782315]
We introduce a new, yet conceptually simple, neural architecture, termed SpinNet, to extract local features.
Experiments on both indoor and outdoor datasets demonstrate that SpinNet outperforms existing state-of-the-art techniques.
arXiv Detail & Related papers (2020-11-24T15:00:56Z) - Implicit Functions in Feature Space for 3D Shape Reconstruction and
Completion [53.885984328273686]
Implicit Feature Networks (IF-Nets) deliver continuous outputs, can handle multiple topologies, and complete shapes for missing or sparse input data.
IF-Nets clearly outperform prior work in 3D object reconstruction in ShapeNet, and obtain significantly more accurate 3D human reconstructions.
arXiv Detail & Related papers (2020-03-03T11:14:29Z) - Pointwise Attention-Based Atrous Convolutional Neural Networks [15.499267533387039]
A pointwise attention-based atrous convolutional neural network architecture is proposed to efficiently deal with a large number of points.
The proposed model has been evaluated on the two most important 3D point cloud datasets for the 3D semantic segmentation task.
It achieves a reasonable performance compared to state-of-the-art models in terms of accuracy, with a much smaller number of parameters.
arXiv Detail & Related papers (2019-12-27T13:12:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.