DiffFinger: Advancing Synthetic Fingerprint Generation through Denoising Diffusion Probabilistic Models
- URL: http://arxiv.org/abs/2405.04538v1
- Date: Fri, 15 Mar 2024 14:34:29 GMT
- Title: DiffFinger: Advancing Synthetic Fingerprint Generation through Denoising Diffusion Probabilistic Models
- Authors: Freddie Grabovski, Lior Yasur, Yaniv Hacmon, Lior Nisimov, Stav Nimrod,
- Abstract summary: This study explores the generation of synthesized fingerprint images using Denoising Diffusion Probabilistic Models (DDPMs)
Our results reveal that DiffFinger not only competes with authentic training set data in quality but also provides a richer set of biometric data, reflecting true-to-life variability.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study explores the generation of synthesized fingerprint images using Denoising Diffusion Probabilistic Models (DDPMs). The significant obstacles in collecting real biometric data, such as privacy concerns and the demand for diverse datasets, underscore the imperative for synthetic biometric alternatives that are both realistic and varied. Despite the strides made with Generative Adversarial Networks (GANs) in producing realistic fingerprint images, their limitations prompt us to propose DDPMs as a promising alternative. DDPMs are capable of generating images with increasing clarity and realism while maintaining diversity. Our results reveal that DiffFinger not only competes with authentic training set data in quality but also provides a richer set of biometric data, reflecting true-to-life variability. These findings mark a promising stride in biometric synthesis, showcasing the potential of DDPMs to advance the landscape of fingerprint identification and authentication systems.
Related papers
- Semi-Truths: A Large-Scale Dataset of AI-Augmented Images for Evaluating Robustness of AI-Generated Image detectors [62.63467652611788]
We introduce SEMI-TRUTHS, featuring 27,600 real images, 223,400 masks, and 1,472,700 AI-augmented images.
Each augmented image is accompanied by metadata for standardized and targeted evaluation of detector robustness.
Our findings suggest that state-of-the-art detectors exhibit varying sensitivities to the types and degrees of perturbations, data distributions, and augmentation methods used.
arXiv Detail & Related papers (2024-11-12T01:17:27Z) - Synthetic Forehead-creases Biometric Generation for Reliable User Verification [6.639785884921617]
We present a new framework to synthesize forehead-crease image data while maintaining important features, such as uniqueness and realism.
We evaluate the diversity and realism of the generated forehead-crease images using the Fr'echet Inception Distance (FID) and the Structural Similarity Index Measure (SSIM)
arXiv Detail & Related papers (2024-08-28T10:33:00Z) - Fingerprint Membership and Identity Inference Against Generative Adversarial Networks [19.292976022250684]
We design and test an identity inference attack on fingerprint datasets created by means of a generative adversarial network.
Experimental results show that the proposed solution proves to be effective under different configurations and easily extendable to other biometric measurements.
arXiv Detail & Related papers (2024-06-21T15:43:47Z) - Universal Fingerprint Generation: Controllable Diffusion Model with Multimodal Conditions [25.738682467090335]
GenPrint is a framework to produce fingerprint images of various types while maintaining identity.
GenPrint is not confined to replicating style characteristics from the training dataset alone.
Results demonstrate the benefits of GenPrint in terms of identity preservation, explainable control, and universality of generated images.
arXiv Detail & Related papers (2024-04-21T23:01:08Z) - Enhancing Fingerprint Image Synthesis with GANs, Diffusion Models, and Style Transfer Techniques [0.44739156031315924]
We generate live fingerprints from noise with a variety of methods, and we use image translation techniques to translate live fingerprint images to spoof.
We assess the diversity and realism of the generated live fingerprint images mainly through the Fr'echet Inception Distance (FID) and the False Acceptance Rate (FAR)
arXiv Detail & Related papers (2024-03-20T18:36:30Z) - FPGAN-Control: A Controllable Fingerprint Generator for Training with
Synthetic Data [7.203557048672379]
We present FPGAN-Control, an identity preserving image generation framework.
We introduce a novel appearance loss that encourages disentanglement between the fingerprint's identity and appearance properties.
We demonstrate the merits of FPGAN-Control, both quantitatively and qualitatively, in terms of identity level, degree of appearance control, and low synthetic-to-real domain gap.
arXiv Detail & Related papers (2023-10-29T14:30:01Z) - Bayesian Networks for the robust and unbiased prediction of depression
and its symptoms utilizing speech and multimodal data [65.28160163774274]
We apply a Bayesian framework to capture the relationships between depression, depression symptoms, and features derived from speech, facial expression and cognitive game data collected at thymia.
arXiv Detail & Related papers (2022-11-09T14:48:13Z) - SpoofGAN: Synthetic Fingerprint Spoof Images [47.87570819350573]
A major limitation to advances in fingerprint spoof detection is the lack of publicly available, large-scale fingerprint spoof datasets.
This work aims to demonstrate the utility of synthetic (both live and spoof) fingerprints in supplying these algorithms with sufficient data.
arXiv Detail & Related papers (2022-04-13T16:27:27Z) - Dual Spoof Disentanglement Generation for Face Anti-spoofing with Depth
Uncertainty Learning [54.15303628138665]
Face anti-spoofing (FAS) plays a vital role in preventing face recognition systems from presentation attacks.
Existing face anti-spoofing datasets lack diversity due to the insufficient identity and insignificant variance.
We propose Dual Spoof Disentanglement Generation framework to tackle this challenge by "anti-spoofing via generation"
arXiv Detail & Related papers (2021-12-01T15:36:59Z) - Responsible Disclosure of Generative Models Using Scalable
Fingerprinting [70.81987741132451]
Deep generative models have achieved a qualitatively new level of performance.
There are concerns on how this technology can be misused to spoof sensors, generate deep fakes, and enable misinformation at scale.
Our work enables a responsible disclosure of such state-of-the-art generative models, that allows researchers and companies to fingerprint their models.
arXiv Detail & Related papers (2020-12-16T03:51:54Z) - Artificial Fingerprinting for Generative Models: Rooting Deepfake
Attribution in Training Data [64.65952078807086]
Photorealistic image generation has reached a new level of quality due to the breakthroughs of generative adversarial networks (GANs)
Yet, the dark side of such deepfakes, the malicious use of generated media, raises concerns about visual misinformation.
We seek a proactive and sustainable solution on deepfake detection by introducing artificial fingerprints into the models.
arXiv Detail & Related papers (2020-07-16T16:49:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.