Fast Decentralized Gradient Tracking for Federated Minimax Optimization with Local Updates
- URL: http://arxiv.org/abs/2405.04566v1
- Date: Tue, 7 May 2024 17:25:56 GMT
- Title: Fast Decentralized Gradient Tracking for Federated Minimax Optimization with Local Updates
- Authors: Chris Junchi Li,
- Abstract summary: textttK-GT-Minimax's ability to handle data heterogeneity underscores its significance in advancing federated learning research and applications.
- Score: 5.269633789700637
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) for minimax optimization has emerged as a powerful paradigm for training models across distributed nodes/clients while preserving data privacy and model robustness on data heterogeneity. In this work, we delve into the decentralized implementation of federated minimax optimization by proposing \texttt{K-GT-Minimax}, a novel decentralized minimax optimization algorithm that combines local updates and gradient tracking techniques. Our analysis showcases the algorithm's communication efficiency and convergence rate for nonconvex-strongly-concave (NC-SC) minimax optimization, demonstrating a superior convergence rate compared to existing methods. \texttt{K-GT-Minimax}'s ability to handle data heterogeneity and ensure robustness underscores its significance in advancing federated learning research and applications.
Related papers
- NTK-DFL: Enhancing Decentralized Federated Learning in Heterogeneous Settings via Neural Tangent Kernel [27.92271597111756]
Decentralized federated learning (DFL) is a collaborative machine learning framework for training a model across participants without a central server or raw data exchange.
Recent work has shown that the neural tangent kernel (NTK) approach, when applied to federated learning in a centralized framework, can lead to improved performance.
We propose an approach leveraging the NTK to train client models in the decentralized setting, while introducing a synergy between NTK-based evolution and model averaging.
arXiv Detail & Related papers (2024-10-02T18:19:28Z) - Robust Decentralized Learning with Local Updates and Gradient Tracking [16.46727164965154]
We consider decentralized learning as a network of communicating clients or nodes.
We propose a decentralized minimax optimization method that employs two important data: local updates and gradient tracking.
arXiv Detail & Related papers (2024-05-02T03:03:34Z) - Asymmetrically Decentralized Federated Learning [22.21977974314497]
Decentralized Federated Learning (DFL) has emerged, which discards the server with a peer-to-peer (P2P) communication framework.
This paper proposes DFedSGPSM algorithm, which is based on asymmetric topologies and utilizes the Push- Aware protocol.
arXiv Detail & Related papers (2023-10-08T09:46:26Z) - Can Decentralized Stochastic Minimax Optimization Algorithms Converge
Linearly for Finite-Sum Nonconvex-Nonconcave Problems? [56.62372517641597]
Decentralized minimax optimization has been actively studied in the past few years due to its application in a wide range machine learning.
This paper develops two novel decentralized minimax optimization algorithms for the non-strongly-nonconcave problem.
arXiv Detail & Related papers (2023-04-24T02:19:39Z) - Near-Optimal Decentralized Momentum Method for Nonconvex-PL Minimax
Problems [39.197569803430646]
Minimax optimization plays an important role in many machine learning tasks such as adversarial networks (GANs) and adversarial training.
Although recently a wide variety of optimization methods have been proposed to solve the minimax problems, most of them ignore the distributed setting.
arXiv Detail & Related papers (2023-04-21T11:38:41Z) - Adaptive Federated Minimax Optimization with Lower Complexities [82.51223883622552]
We propose an efficient adaptive minimax optimization algorithm (i.e., AdaFGDA) to solve these minimax problems.
It builds our momentum-based reduced and localSGD techniques, and it flexibly incorporate various adaptive learning rates.
arXiv Detail & Related papers (2022-11-14T12:32:18Z) - Data-heterogeneity-aware Mixing for Decentralized Learning [63.83913592085953]
We characterize the dependence of convergence on the relationship between the mixing weights of the graph and the data heterogeneity across nodes.
We propose a metric that quantifies the ability of a graph to mix the current gradients.
Motivated by our analysis, we propose an approach that periodically and efficiently optimize the metric.
arXiv Detail & Related papers (2022-04-13T15:54:35Z) - Federated Minimax Optimization: Improved Convergence Analyses and
Algorithms [32.062312674333775]
We consider non minimax optimization, is gaining prominence many modern machine learning applications such as GANs.
We provide a novel and tighter analysis algorithm, improves convergence communication guarantees in the existing literature.
arXiv Detail & Related papers (2022-03-09T16:21:31Z) - Escaping Saddle Points with Bias-Variance Reduced Local Perturbed SGD
for Communication Efficient Nonconvex Distributed Learning [58.79085525115987]
Local methods are one of the promising approaches to reduce communication time.
We show that the communication complexity is better than non-local methods when the local datasets is smaller than the smoothness local loss.
arXiv Detail & Related papers (2022-02-12T15:12:17Z) - Local AdaGrad-Type Algorithm for Stochastic Convex-Concave Minimax
Problems [80.46370778277186]
Large scale convex-concave minimax problems arise in numerous applications, including game theory, robust training, and training of generative adversarial networks.
We develop a communication-efficient distributed extragrad algorithm, LocalAdaSient, with an adaptive learning rate suitable for solving convex-concave minimax problem in the.
Server model.
We demonstrate its efficacy through several experiments in both the homogeneous and heterogeneous settings.
arXiv Detail & Related papers (2021-06-18T09:42:05Z) - FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity
to Non-IID Data [59.50904660420082]
Federated Learning (FL) has become a popular paradigm for learning from distributed data.
To effectively utilize data at different devices without moving them to the cloud, algorithms such as the Federated Averaging (FedAvg) have adopted a "computation then aggregation" (CTA) model.
arXiv Detail & Related papers (2020-05-22T23:07:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.