論文の概要: Physics-based deep learning reveals rising heating demand heightens air pollution in Norwegian cities
- arxiv url: http://arxiv.org/abs/2405.04716v1
- Date: Tue, 7 May 2024 23:43:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-09 15:45:06.942570
- Title: Physics-based deep learning reveals rising heating demand heightens air pollution in Norwegian cities
- Title(参考訳): 物理ベースのディープラーニングは、ノルウェーの都市で暖房需要が上昇し大気汚染が高まる
- Authors: Cong Cao, Ramit Debnath, R. Michael Alvarez,
- Abstract要約: 政策立案者は、交流を無視して、大気の質や気候変動を孤立して分析することが多い。
本研究は,K平均クラスタリング,階層クラスタリング,ランダムフォレスト技術と回帰モデルを比較して,特定の気候要因が大気質に及ぼす影響を考察する。
大気汚染予測のための物理ベースディープラーニング(PBDL)とLong Short-Term Memory(LSTM)を用いる。
- 参考スコア(独自算出の注目度): 0.9187407509784052
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Policymakers frequently analyze air quality and climate change in isolation, disregarding their interactions. This study explores the influence of specific climate factors on air quality by contrasting a regression model with K-Means Clustering, Hierarchical Clustering, and Random Forest techniques. We employ Physics-based Deep Learning (PBDL) and Long Short-Term Memory (LSTM) to examine the air pollution predictions. Our analysis utilizes ten years (2009-2018) of daily traffic, weather, and air pollution data from three major cities in Norway. Findings from feature selection reveal a correlation between rising heating degree days and heightened air pollution levels, suggesting increased heating activities in Norway are a contributing factor to worsening air quality. PBDL demonstrates superior accuracy in air pollution predictions compared to LSTM. This paper contributes to the growing literature on PBDL methods for more accurate air pollution predictions using environmental variables, aiding policymakers in formulating effective data-driven climate policies.
- Abstract(参考訳): 政策立案者は、交流を無視して、大気の質や気候変動を孤立して分析することが多い。
本研究は,K平均クラスタリング,階層クラスタリング,ランダムフォレスト技術と回帰モデルを比較して,特定の気候要因が大気質に及ぼす影響を考察する。
大気汚染予測のための物理ベースディープラーニング(PBDL)とLong Short-Term Memory(LSTM)を用いる。
本分析は,ノルウェーの3大都市における1日あたりの交通量,気象量,大気汚染量の10年間(2009-2018年)を利用して行った。
特徴選択による発見は、暖房日の増加と大気汚染レベルの増加との相関を明らかにし、ノルウェーにおける暖房活動の増加が大気質の悪化に寄与する要因であることを示唆している。
PBDLはLSTMに比べて大気汚染予測の精度が優れている。
本稿では, 環境変数を用いた大気汚染予測のためのPBDL法に関する文献の増大に寄与し, 効果的なデータ駆動型気候政策を策定する政策立案者を支援する。
関連論文リスト
- Novel Approach for Predicting the Air Quality Index of Megacities through Attention-Enhanced Deep Multitask Spatiotemporal Learning [0.2886273197127056]
大気汚染は、特に都市部において、世界中の人間の健康にとって最も深刻な環境脅威の1つだ。
人口1000万人を超える都市として定義されるメガシティーは、深刻な汚染のホットスポットとして頻繁に見られる。
本稿では,長期記憶ネットワークに基づく注意力強化型ディープラーニングモデルを提案する。
論文 参考訳(メタデータ) (2024-07-15T23:43:50Z) - Back to the Future: GNN-based NO$_2$ Forecasting via Future Covariates [49.93577170464313]
都市全域にわたる地上監視ネットワークにおける大気質観測について検討する。
我々は過去と将来の共変分を現在の観測に埋め込む条件付きブロックを提案する。
将来の気象情報に対する条件付けは,過去の交通状況を考えるよりも影響が大きいことが判明した。
論文 参考訳(メタデータ) (2024-04-08T09:13:16Z) - Comparing Data-Driven and Mechanistic Models for Predicting Phenology in
Deciduous Broadleaf Forests [47.285748922842444]
我々は、気象時系列から表現指標を予測するために、ディープニューラルネットワークを訓練する。
このアプローチは従来のプロセスベースのモデルよりも優れています。
論文 参考訳(メタデータ) (2024-01-08T15:29:23Z) - Climate-sensitive Urban Planning through Optimization of Tree Placements [55.11389516857789]
気候変動は、熱波を含む多くの極端な気象事象の強度と頻度を増している。
最も有望な戦略の1つは、街路樹の恩恵を利用して歩行者レベルの環境を冷やすことである。
物理シミュレーションでは、樹木の放射的および熱的影響が人間の熱的快適性に与える影響を推定できるが、高い計算コストが生じる。
我々は,屋外の熱的快適さの駆動因子である点平均放射温度を,様々な時間スケールでシミュレーションするためにニューラルネットワークを用いた。
論文 参考訳(メタデータ) (2023-10-09T13:07:23Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
気候変動は地下水汚染の長期的な土壌管理問題を悪化させる。
U-Net強化フーリエニューラル汚染(PDENO)を用いた物理インフォームド機械学習サロゲートモデルを開発した。
並行して、気候データと組み合わされた畳み込みオートエンコーダを開発し、アメリカ合衆国全体の気候領域の類似性の次元を減少させる。
論文 参考訳(メタデータ) (2022-11-20T06:46:35Z) - Data-driven Real-time Short-term Prediction of Air Quality: Comparison
of ES, ARIMA, and LSTM [0.0]
歴史的データに基づく空気質の予測には,データ駆動方式を用いる。
予測精度と時間的複雑さを考慮して, 短時間の大気汚染予測ESは, ARIMAやLSTMよりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-11-16T09:37:08Z) - Spatiotemporal modeling of European paleoclimate using doubly sparse
Gaussian processes [61.31361524229248]
計算負担を軽減するため,近年の大規模分散時間GPを構築した。
我々は,古気候の確率モデルを構築するために,この2倍のスパースGPをうまく利用した。
論文 参考訳(メタデータ) (2022-11-15T14:15:04Z) - Deciphering Environmental Air Pollution with Large Scale City Data [0.0]
交通や発電所からの排出、家庭からの排出、自然発生など、様々な要因が大気汚染の上昇の背後にある主要な原因要因または影響要因であることが知られている。
本稿では,これらのエージェント間の関係を長期にわたって探索するための大規模都市情報データセットを提案する。
また,多種多様なモデルと方法論を用いて汚染物質レベルを推定または予測する問題に対するベンチマークのセットを提供する。
論文 参考訳(メタデータ) (2021-09-09T22:00:51Z) - Estimation of Air Pollution with Remote Sensing Data: Revealing
Greenhouse Gas Emissions from Space [1.9659095632676094]
地上レベルの大気汚染の既存のモデルは、しばしば局所的に制限され、時間的に静的な土地利用データセットに依存している。
本研究は,世界規模で利用でき,頻繁に更新されるリモートセンシングデータにのみ依存する環境大気汚染の予測のための深層学習手法を提案する。
論文 参考訳(メタデータ) (2021-08-31T14:58:04Z) - The Power of Language: Understanding Sentiment Towards the Climate
Emergency using Twitter Data [0.0]
原油先物と気候危機に対する感情との間には関係があると推測できる。
本研究は,気候危機時の会話を3つのトピックに分割することが可能であることを示す。
論文 参考訳(メタデータ) (2021-01-25T19:51:10Z) - Analyzing Sustainability Reports Using Natural Language Processing [68.8204255655161]
近年、企業は環境への影響を緩和し、気候変動の状況に適応することを目指している。
これは、環境・社会・ガバナンス(ESG)の傘下にある様々な種類の気候リスクと暴露を網羅する、ますます徹底した報告を通じて報告されている。
本稿では,本稿で開発したツールと方法論について紹介する。
論文 参考訳(メタデータ) (2020-11-03T21:22:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。