Feature Construction Using Network Control Theory and Rank Encoding for Graph Machine Learning
- URL: http://arxiv.org/abs/2507.15195v2
- Date: Tue, 22 Jul 2025 02:51:41 GMT
- Title: Feature Construction Using Network Control Theory and Rank Encoding for Graph Machine Learning
- Authors: Anwar Said, Yifan Wei, Obaid Ullah Ahmad, Mudassir Shabbir, Waseem Abbas, Xenofon Koutsoukos,
- Abstract summary: We use the concept of average controllability in graphs, along with a novel rank encoding method, to enhance the performance of Graph Neural Networks (GNNs) in social network classification tasks.<n>Our results demonstrate that incorporating average controllability into the feature space significantly improves GNN performance.
- Score: 3.538924360885582
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this article, we utilize the concept of average controllability in graphs, along with a novel rank encoding method, to enhance the performance of Graph Neural Networks (GNNs) in social network classification tasks. GNNs have proven highly effective in various network-based learning applications and require some form of node features to function. However, their performance is heavily influenced by the expressiveness of these features. In social networks, node features are often unavailable due to privacy constraints or the absence of inherent attributes, making it challenging for GNNs to achieve optimal performance. To address this limitation, we propose two strategies for constructing expressive node features. First, we introduce average controllability along with other centrality metrics (denoted as NCT-EFA) as node-level metrics that capture critical aspects of network topology. Building on this, we develop a rank encoding method that transforms average controllability or any other graph-theoretic metric into a fixed-dimensional feature space, thereby improving feature representation. We conduct extensive numerical evaluations using six benchmark GNN models across four social network datasets to compare different node feature construction methods. Our results demonstrate that incorporating average controllability into the feature space significantly improves GNN performance. Moreover, the proposed rank encoding method outperforms traditional one-hot degree encoding, improving the ROC AUC from 68.7% to 73.9% using GraphSAGE on the GitHub Stargazers dataset, underscoring its effectiveness in generating expressive and efficient node representations.
Related papers
- Graph Neural Networks Powered by Encoder Embedding for Improved Node Learning [17.31465642587528]
Graph neural networks (GNNs) have emerged as a powerful framework for a wide range of node-level graph learning tasks.<n>In this paper, we leverage a statistically grounded method, one-hot graph encoder embedding (GEE), to generate high-quality initial node features.<n>We demonstrate its effectiveness through extensive simulations and real-world experiments across both unsupervised and supervised settings.
arXiv Detail & Related papers (2025-07-15T21:01:54Z) - Graph as a feature: improving node classification with non-neural graph-aware logistic regression [2.952177779219163]
Graph-aware Logistic Regression (GLR) is a non-neural model designed for node classification tasks.
Unlike traditional graph algorithms that use only a fraction of the information accessible to GNNs, our proposed model simultaneously leverages both node features and the relationships between entities.
arXiv Detail & Related papers (2024-11-19T08:32:14Z) - Conditional Local Feature Encoding for Graph Neural Networks [14.983942698240293]
Graph neural networks (GNNs) have shown great success in learning from graph-based data.
The key mechanism of current GNNs is message passing, where a node's feature is updated based on the information passing from its local neighbourhood.
We propose conditional local feature encoding (CLFE) to help prevent the problem of node features being dominated by information from local neighbourhood.
arXiv Detail & Related papers (2024-05-08T01:51:19Z) - Improving Graph Machine Learning Performance Through Feature Augmentation Based on Network Control Theory [3.2505793054002963]
Graph Neural Networks (GNNs) have demonstrated exceptional utility in various network-based learning tasks.
Many real-world systems may lack node-level information, posing a challenge for GNNs.
We introduce a novel approach, NCT-based Enhanced Feature Augmentation (NCT-EFA), that assimilates average controllability, along with other centrality indices, into the feature augmentation pipeline to enhance GNNs performance.
arXiv Detail & Related papers (2024-05-03T19:11:54Z) - Degree-based stratification of nodes in Graph Neural Networks [66.17149106033126]
We modify the Graph Neural Network (GNN) architecture so that the weight matrices are learned, separately, for the nodes in each group.
This simple-to-implement modification seems to improve performance across datasets and GNN methods.
arXiv Detail & Related papers (2023-12-16T14:09:23Z) - Enhanced Graph Neural Networks with Ego-Centric Spectral Subgraph
Embeddings Augmentation [11.841882902141696]
We present a novel approach denoted as Ego-centric Spectral subGraph Embedding Augmentation (ESGEA)
ESGEA aims to enhance and design node features, particularly in scenarios where information is lacking.
We evaluate the proposed method in a social network graph classification task where node attributes are unavailable.
arXiv Detail & Related papers (2023-10-10T14:57:29Z) - Collaborative Graph Neural Networks for Attributed Network Embedding [63.39495932900291]
Graph neural networks (GNNs) have shown prominent performance on attributed network embedding.
We propose COllaborative graph Neural Networks--CONN, a tailored GNN architecture for network embedding.
arXiv Detail & Related papers (2023-07-22T04:52:27Z) - Identity-aware Graph Neural Networks [63.6952975763946]
We develop a class of message passing Graph Neural Networks (ID-GNNs) with greater expressive power than the 1-WL test.
ID-GNN extends existing GNN architectures by inductively considering nodes' identities during message passing.
We show that transforming existing GNNs to ID-GNNs yields on average 40% accuracy improvement on challenging node, edge, and graph property prediction tasks.
arXiv Detail & Related papers (2021-01-25T18:59:01Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
Graph neural networks (GNNs) aim to model the local graph structures and capture the hierarchical patterns by aggregating the information from neighbors.
It is a challenging task to develop an effective aggregation strategy for each node, given complex graphs and sparse features.
We propose Policy-GNN, a meta-policy framework that models the sampling procedure and message passing of GNNs into a combined learning process.
arXiv Detail & Related papers (2020-06-26T17:03:06Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
We leverage graph signal processing to characterize the representation space of graph neural networks (GNNs)
We discuss the role of graph convolutional filters in GNNs and show that any architecture built with such filters has the fundamental properties of permutation equivariance and stability to changes in the topology.
We also study the use of GNNs in recommender systems and learning decentralized controllers for robot swarms.
arXiv Detail & Related papers (2020-03-08T13:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.