論文の概要: Large Language Models for Cyber Security: A Systematic Literature Review
- arxiv url: http://arxiv.org/abs/2405.04760v1
- Date: Wed, 8 May 2024 02:09:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-09 15:35:21.319495
- Title: Large Language Models for Cyber Security: A Systematic Literature Review
- Title(参考訳): サイバーセキュリティのための大規模言語モデル: 体系的文献レビュー
- Authors: HanXiang Xu, ShenAo Wang, Ningke Li, Yanjie Zhao, Kai Chen, Kailong Wang, Yang Liu, Ting Yu, HaoYu Wang,
- Abstract要約: サイバーセキュリティ(LLM4Security)における大規模言語モデルの適用に関する文献の総合的なレビューを行う。
LLMは、脆弱性検出、マルウェア分析、ネットワーク侵入検出、フィッシング検出など、幅広いサイバーセキュリティタスクに応用されている。
第3に、細調整、転送学習、ドメイン固有の事前トレーニングなど、特定のサイバーセキュリティドメインにLLMを適用するための有望なテクニックをいくつか特定する。
- 参考スコア(独自算出の注目度): 14.924782327303765
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancement of Large Language Models (LLMs) has opened up new opportunities for leveraging artificial intelligence in various domains, including cybersecurity. As the volume and sophistication of cyber threats continue to grow, there is an increasing need for intelligent systems that can automatically detect vulnerabilities, analyze malware, and respond to attacks. In this survey, we conduct a comprehensive review of the literature on the application of LLMs in cybersecurity (LLM4Security). By comprehensively collecting over 30K relevant papers and systematically analyzing 127 papers from top security and software engineering venues, we aim to provide a holistic view of how LLMs are being used to solve diverse problems across the cybersecurity domain. Through our analysis, we identify several key findings. First, we observe that LLMs are being applied to a wide range of cybersecurity tasks, including vulnerability detection, malware analysis, network intrusion detection, and phishing detection. Second, we find that the datasets used for training and evaluating LLMs in these tasks are often limited in size and diversity, highlighting the need for more comprehensive and representative datasets. Third, we identify several promising techniques for adapting LLMs to specific cybersecurity domains, such as fine-tuning, transfer learning, and domain-specific pre-training. Finally, we discuss the main challenges and opportunities for future research in LLM4Security, including the need for more interpretable and explainable models, the importance of addressing data privacy and security concerns, and the potential for leveraging LLMs for proactive defense and threat hunting. Overall, our survey provides a comprehensive overview of the current state-of-the-art in LLM4Security and identifies several promising directions for future research.
- Abstract(参考訳): 大規模言語モデル(LLM)の急速な進歩は、サイバーセキュリティを含むさまざまな領域で人工知能を活用する新たな機会を開いた。
サイバー脅威の量と高度化が進むにつれ、脆弱性を自動的に検出し、マルウェアを分析し、攻撃に応答するインテリジェントシステムの必要性が高まっている。
本調査では,LLMのサイバーセキュリティ(LLM4Security)への適用に関する文献を概観する。
30万件以上の関連論文を包括的に収集し、トップセキュリティとソフトウェアエンジニアリングの会場から127件の論文を体系的に分析することで、LLMがサイバーセキュリティ領域の様々な問題を解決するためにどのように使われているのか、全体像を提供することを目指している。
分析により,いくつかの重要な知見が得られた。
まず、脆弱性検出、マルウェア分析、ネットワーク侵入検出、フィッシング検出など、幅広いサイバーセキュリティタスクにLLMが適用されていることを観察する。
第2に、これらのタスクにおけるLSMのトレーニングと評価に使用されるデータセットは、サイズと多様性に制限されることが少なく、より包括的で代表的なデータセットの必要性を強調している。
第3に、細調整、転送学習、ドメイン固有の事前トレーニングなど、特定のサイバーセキュリティドメインにLLMを適用するための有望なテクニックをいくつか特定する。
最後に、LLM4Securityにおける今後の研究の課題と機会について論じる。その中には、より解釈可能で説明可能なモデルの必要性、データのプライバシとセキュリティの問題に対処することの重要性、積極的に防御と脅威ハンティングにLLMを活用する可能性などが含まれる。
本調査では,LLM4Securityの現状を概観し,今後の研究に期待できるいくつかの方向性を明らかにした。
関連論文リスト
- Navigating the Risks: A Survey of Security, Privacy, and Ethics Threats in LLM-Based Agents [67.07177243654485]
この調査は、大規模言語モデルに基づくエージェントが直面するさまざまな脅威を収集、分析する。
LLMをベースとしたエージェントの6つの重要な特徴を概説する。
4つの代表エージェントをケーススタディとして選択し,実践的に直面する可能性のあるリスクを分析した。
論文 参考訳(メタデータ) (2024-11-14T15:40:04Z) - CyberPal.AI: Empowering LLMs with Expert-Driven Cybersecurity Instructions [0.2999888908665658]
大規模言語モデル(LLM)は、非常に高度な自然言語処理(NLP)機能を持ち、様々なアプリケーションにまたがる汎用機能を提供する。
しかし、サイバーセキュリティのような複雑なドメイン固有のタスクへの応用は、しばしば重大な課題に直面している。
本研究では,SecKnowledgeとCyberPal.AIを紹介し,これらの課題に対処し,セキュリティ専門家のLSMを訓練する。
論文 参考訳(メタデータ) (2024-08-17T22:37:39Z) - A Survey of Attacks on Large Vision-Language Models: Resources, Advances, and Future Trends [78.3201480023907]
LVLM(Large Vision-Language Models)は、多モーダルな理解と推論タスクにまたがる顕著な能力を示す。
LVLMの脆弱性は比較的過小評価されており、日々の使用において潜在的なセキュリティリスクを生じさせる。
本稿では,既存のLVLM攻撃の様々な形態について概説する。
論文 参考訳(メタデータ) (2024-07-10T06:57:58Z) - Unique Security and Privacy Threats of Large Language Model: A Comprehensive Survey [46.19229410404056]
大規模言語モデル(LLM)は自然言語処理において顕著な進歩を遂げた。
これらのモデルは、強力な言語理解と生成能力を示すために、広大なデータセットでトレーニングされている。
プライバシーとセキュリティの問題は、そのライフサイクルを通じて明らかになっている。
論文 参考訳(メタデータ) (2024-06-12T07:55:32Z) - Generative AI and Large Language Models for Cyber Security: All Insights You Need [0.06597195879147556]
本稿では,ジェネレーティブAIとLarge Language Models(LLMs)によるサイバーセキュリティの将来を概観する。
ハードウェア設計のセキュリティ、侵入検知、ソフトウェアエンジニアリング、設計検証、サイバー脅威インテリジェンス、マルウェア検出、フィッシング検出など、さまざまな領域にわたるLCMアプリケーションを探索する。
GPT-4, GPT-3.5, Mixtral-8x7B, BERT, Falcon2, LLaMA などのモデルの発展に焦点を当て, LLM の進化とその現状について概説する。
論文 参考訳(メタデータ) (2024-05-21T13:02:27Z) - When LLMs Meet Cybersecurity: A Systematic Literature Review [9.347716970758604]
大規模言語モデル(LLM)は、サイバーセキュリティを含む様々な分野に新しい道を開いた。
この研究領域の包括的概要は欠如している。
本研究は,LLMがサイバーセキュリティの実践を強化する上での広範な可能性を明らかにすることを目的としている。
論文 参考訳(メタデータ) (2024-05-06T17:07:28Z) - Large Language Models in Cybersecurity: State-of-the-Art [4.990712773805833]
大規模言語モデル(LLM)の台頭は、私たちの知性の理解に革命をもたらした。
本研究は, サイバーセキュリティの領域におけるLLMの防衛的, 敵的応用の徹底的な評価を, 既存の文献を考察した。
論文 参考訳(メタデータ) (2024-01-30T16:55:25Z) - Security and Privacy Challenges of Large Language Models: A Survey [2.6986500640871482]
LLM(Large Language Models)は、テキストの生成や要約、言語翻訳、質問応答など、非常に優れた機能を示し、複数の分野に貢献している。
これらのモデルは、Jailbreak攻撃、データ中毒攻撃、Personally Identible Information(PII)漏洩攻撃など、セキュリティやプライバシ攻撃にも脆弱である。
この調査では、トレーニングデータとユーザの両方に対するLLMのセキュリティとプライバシの課題と、輸送、教育、医療といったさまざまな領域におけるアプリケーションベースのリスクについて、徹底的にレビューする。
論文 参考訳(メタデータ) (2024-01-30T04:00:54Z) - A Survey on Detection of LLMs-Generated Content [97.87912800179531]
LLMの生成する内容を検出する能力が最重要視されている。
既存の検出戦略とベンチマークの詳細な概要を提供する。
また、様々な攻撃から守るための多面的アプローチの必要性を示唆する。
論文 参考訳(メタデータ) (2023-10-24T09:10:26Z) - Privacy in Large Language Models: Attacks, Defenses and Future Directions [84.73301039987128]
大規模言語モデル(LLM)を対象とした現在のプライバシ攻撃を分析し、敵の想定能力に応じて分類する。
本稿では、これらのプライバシー攻撃に対抗するために開発された防衛戦略について概説する。
論文 参考訳(メタデータ) (2023-10-16T13:23:54Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。