論文の概要: Practical and Scalable Quantum Reservoir Computing
- arxiv url: http://arxiv.org/abs/2405.04799v1
- Date: Wed, 8 May 2024 04:14:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-09 15:24:34.036331
- Title: Practical and Scalable Quantum Reservoir Computing
- Title(参考訳): 実用的でスケーラブルな量子貯留層計算
- Authors: Chuanzhou Zhu, Peter J. Ehlers, Hendra I. Nurdin, Daniel Soh,
- Abstract要約: 量子貯留層計算(Quantum Reservoir Computing)は、量子システムを利用して、前例のない効率と省エネルギーで複雑な計算課題を解決する。
本稿では, 単一モード光空洞内の2レベル原子からなる量子光学貯留層を用いた新しいQRCフレームワークを提案する。
我々は,2つの主要なタスク,すなわち正方形波形の分類による時系列データの予測を通じて,貯水池の性能を評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum Reservoir Computing leverages quantum systems to solve complex computational tasks with unprecedented efficiency and reduced energy consumption. This paper presents a novel QRC framework utilizing a quantum optical reservoir composed of two-level atoms within a single-mode optical cavity. Employing the Jaynes-Cummings and Tavis-Cummings models, we introduce a scalable and practically measurable reservoir that outperforms traditional classical reservoir computing in both memory retention and nonlinear data processing. We evaluate the reservoir's performance through two primary tasks: the prediction of time-series data via the Mackey-Glass task and the classification of sine-square waveforms. Our results demonstrate significant enhancements in performance with increased numbers of atoms, supported by non-destructive, continuous quantum measurements and polynomial regression techniques. This study confirms the potential of QRC to offer a scalable and efficient solution for advanced computational challenges, marking a significant step forward in the integration of quantum physics with machine learning technology.
- Abstract(参考訳): 量子貯留層計算(Quantum Reservoir Computing)は、量子システムを利用して、前例のない効率と省エネルギーで複雑な計算課題を解決する。
本稿では, 単一モード光空洞内の2レベル原子からなる量子光学貯留層を用いた新しいQRCフレームワークを提案する。
本稿では,Jaynes-CummingsモデルとTavis-Cummingsモデルを用いて,メモリ保持と非線形データ処理の両方において従来の貯水池計算より優れるスケーラブルで実測可能な貯水池を提案する。
我々は,マッキーグラスタスクによる時系列データの予測と正方形波形の分類という2つの主要なタスクを通じて,貯水池の性能を評価する。
本研究は,非破壊的連続量子計測と多項式回帰法により支持された原子数の増加による性能の著しい向上を示すものである。
この研究は、QRCが高度な計算課題に対してスケーラブルで効率的なソリューションを提供する可能性を確認し、量子物理学と機械学習技術の統合において大きな一歩を踏み出した。
関連論文リスト
- Minimalistic and Scalable Quantum Reservoir Computing Enhanced with Feedback [0.0]
量子Reservoir Computing (QRC) は、量子システムを利用して、例外的な効率とエネルギー消費の削減で複雑な計算タスクを実行する。
単一モード光キャビティ内の2レベル原子を数個だけ利用し,連続量子測定と組み合わせた最小主義QRCフレームワークを提案する。
このフレームワークは、ハードウェアサイズとエネルギー消費を最小限にするため、QRCの目的を満たす。
論文 参考訳(メタデータ) (2024-12-06T23:44:46Z) - Memory-Augmented Hybrid Quantum Reservoir Computing [0.0]
本稿では、量子計測の古典的後処理を通じてメモリを実装するハイブリッド量子古典的アプローチを提案する。
我々は、完全に連結されたIsingモデルとRydberg原子配列の2つの物理プラットフォーム上でモデルをテストした。
論文 参考訳(メタデータ) (2024-09-15T22:44:09Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quadratic speed-ups in quantum kernelized binary classification [1.3812010983144802]
量子カーネルをデータ間の類似性の尺度として使用するいくつかの量子機械学習アルゴリズムが登場し、量子状態として符号化されたデータセットのバイナリ分類を実行するようになった。
本稿では,QKCに対する新しい量子回路を提案し,量子ビットの数を1つ減らし,サンプルデータに対して回路深さを線形に減らした。
Irisデータセットの数値シミュレーションにより,従来の手法よりも2次的な高速化を検証した。
論文 参考訳(メタデータ) (2024-03-26T07:39:48Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
本稿では,分散量子コンピューティング(DQC)のためのリソース割り当て方式を提案する。
本評価は,提案手法の有効性と,量子コンピュータとオンデマンド量子コンピュータの両立性を示すものである。
論文 参考訳(メタデータ) (2022-09-16T02:37:32Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - Reservoir Computing Approach to Quantum State Measurement [0.0]
貯留層計算(Reservoir computing)は、超伝導多ビット系の量子計測における資源効率の高い解である。
このデバイスを動作させて2量子状態トモグラフィーと連続パリティモニタリングを行う方法を示す。
論文 参考訳(メタデータ) (2020-11-19T04:46:15Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
本研究は、D-Wave 2000Q量子アニール上の分子電子ハミルトニアン固有値-固有ベクトル問題を解くために、一般量子アニール固有解法(QAE)アルゴリズムを実装した。
そこで本研究では,D-Waveハードウェアを用いた各種分子系における基底および電子励起状態の取得について述べる。
論文 参考訳(メタデータ) (2020-09-02T22:46:47Z) - Simulating quantum chemistry in the seniority-zero space on qubit-based
quantum computers [0.0]
計算量子化学の近似をゲートベースの量子コンピュータ上で分子化学をシミュレートする手法と組み合わせる。
基本集合を増大させるために解放された量子資源を用いることで、より正確な結果が得られ、必要な数の量子コンピューティングの実行が削減されることが示される。
論文 参考訳(メタデータ) (2020-01-31T19:44:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。