論文の概要: Practical and Scalable Quantum Reservoir Computing
- arxiv url: http://arxiv.org/abs/2405.04799v1
- Date: Wed, 8 May 2024 04:14:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-09 15:24:34.036331
- Title: Practical and Scalable Quantum Reservoir Computing
- Title(参考訳): 実用的でスケーラブルな量子貯留層計算
- Authors: Chuanzhou Zhu, Peter J. Ehlers, Hendra I. Nurdin, Daniel Soh,
- Abstract要約: 量子貯留層計算(Quantum Reservoir Computing)は、量子システムを利用して、前例のない効率と省エネルギーで複雑な計算課題を解決する。
本稿では, 単一モード光空洞内の2レベル原子からなる量子光学貯留層を用いた新しいQRCフレームワークを提案する。
我々は,2つの主要なタスク,すなわち正方形波形の分類による時系列データの予測を通じて,貯水池の性能を評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum Reservoir Computing leverages quantum systems to solve complex computational tasks with unprecedented efficiency and reduced energy consumption. This paper presents a novel QRC framework utilizing a quantum optical reservoir composed of two-level atoms within a single-mode optical cavity. Employing the Jaynes-Cummings and Tavis-Cummings models, we introduce a scalable and practically measurable reservoir that outperforms traditional classical reservoir computing in both memory retention and nonlinear data processing. We evaluate the reservoir's performance through two primary tasks: the prediction of time-series data via the Mackey-Glass task and the classification of sine-square waveforms. Our results demonstrate significant enhancements in performance with increased numbers of atoms, supported by non-destructive, continuous quantum measurements and polynomial regression techniques. This study confirms the potential of QRC to offer a scalable and efficient solution for advanced computational challenges, marking a significant step forward in the integration of quantum physics with machine learning technology.
- Abstract(参考訳): 量子貯留層計算(Quantum Reservoir Computing)は、量子システムを利用して、前例のない効率と省エネルギーで複雑な計算課題を解決する。
本稿では, 単一モード光空洞内の2レベル原子からなる量子光学貯留層を用いた新しいQRCフレームワークを提案する。
本稿では,Jaynes-CummingsモデルとTavis-Cummingsモデルを用いて,メモリ保持と非線形データ処理の両方において従来の貯水池計算より優れるスケーラブルで実測可能な貯水池を提案する。
我々は,マッキーグラスタスクによる時系列データの予測と正方形波形の分類という2つの主要なタスクを通じて,貯水池の性能を評価する。
本研究は,非破壊的連続量子計測と多項式回帰法により支持された原子数の増加による性能の著しい向上を示すものである。
この研究は、QRCが高度な計算課題に対してスケーラブルで効率的なソリューションを提供する可能性を確認し、量子物理学と機械学習技術の統合において大きな一歩を踏み出した。
関連論文リスト
- Memory-Augmented Hybrid Quantum Reservoir Computing [0.0]
本稿では、量子計測の古典的後処理を通じてメモリを実装するハイブリッド量子古典的アプローチを提案する。
我々は、完全に連結されたIsingモデルとRydberg原子配列の2つの物理プラットフォーム上でモデルをテストした。
論文 参考訳(メタデータ) (2024-09-15T22:44:09Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Calculating the energy profile of an enzymatic reaction on a quantum computer [0.0]
量子コンピューティングは、量子化学計算を可能にするための有望な道を提供する。
最近の研究は、ノイズ中間量子(NISQ)デバイスのためのアルゴリズムの開発とスケーリングに向けられている。
論文 参考訳(メタデータ) (2024-08-20T18:00:01Z) - Classical and quantum reservoir computing: development and applications
in machine learning [0.0]
貯留層計算(Reservoir computing)は、非線形力学系を用いてデータから複雑な時間パターンを学習する、新しい機械学習アルゴリズムである。
この研究は、農業時系列予測を含む、非常に異なる領域にわたるアルゴリズムの堅牢性と適応性を実証している。
この論文の最後の貢献は、量子貯水池計算のためのアルゴリズム設計の最適化である。
論文 参考訳(メタデータ) (2023-10-11T13:01:05Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
量子カーネル法(Quantum Kernel Methods, QKM)のデータ表現能力とSAMの効率的な情報抽出能力を組み合わせた量子カーネル自己認識機構(Quantum Kernel Self-Attention Mechanism, QKSAM)を導入する。
量子カーネル自己保持ネットワーク(QKSAN)フレームワークは,DMP(Dederred Measurement Principle)と条件測定技術を巧みに組み込んだQKSAMに基づいて提案されている。
4つのQKSANサブモデルはPennyLaneとIBM Qiskitプラットフォームにデプロイされ、MNISTとFashion MNISTのバイナリ分類を実行する。
論文 参考訳(メタデータ) (2023-08-25T15:08:19Z) - Quantum Imitation Learning [74.15588381240795]
本稿では、量子優位性を利用してILを高速化する量子模倣学習(QIL)を提案する。
量子行動クローニング(Q-BC)と量子生成逆模倣学習(Q-GAIL)という2つのQILアルゴリズムを開発した。
実験結果から,Q-BCとQ-GAILの両者が,従来のものと同等の性能を達成できることが判明した。
論文 参考訳(メタデータ) (2023-04-04T12:47:35Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
量子計算を古典的な結果によって補う手法を提案する。
予測の利点を生かして、新しいタイプの量子測度がもたらされる。
予測量子測定では、古典計算と量子計算の結果の組み合わせは最後にのみ起こる。
論文 参考訳(メタデータ) (2022-09-12T15:47:44Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
SAM(Self-Attention Mechanism)は機能の内部接続を捉えるのに長けている。
短期量子デバイスにおける画像分類タスクに対して,新しい量子自己注意ネットワーク(QSAN)を提案する。
論文 参考訳(メタデータ) (2022-07-14T12:22:51Z) - Reducing Unitary Coupled Cluster Circuit Depth by Classical Stochastic
Amplitude Pre-Screening [0.0]
Unitary Coupled Cluster (UCC)アプローチは、量子化学計算を実行するために量子ハードウェアを利用するための魅力的な方法である。
本稿では,従来のUCC前処理ステップを用いてUCCアンサッツの重要な励起を判定する,古典量子と古典量子の併用手法を提案する。
論文 参考訳(メタデータ) (2021-08-24T18:34:14Z) - Reservoir Computing Approach to Quantum State Measurement [0.0]
貯留層計算(Reservoir computing)は、超伝導多ビット系の量子計測における資源効率の高い解である。
このデバイスを動作させて2量子状態トモグラフィーと連続パリティモニタリングを行う方法を示す。
論文 参考訳(メタデータ) (2020-11-19T04:46:15Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
量子コンピュータ上で励起状態を作成するための2つの異なる方法を研究する。
シミュレーションおよび実量子デバイス上でこれらの手法をベンチマークする。
これらの結果から,フォールトトレラントデバイスに優れたスケーリングを実現するために設計された量子技術が,接続性やゲート忠実性に制限されたデバイスに実用的なメリットをもたらす可能性が示唆された。
論文 参考訳(メタデータ) (2020-09-28T17:21:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。