論文の概要: Practical Few-Atom Quantum Reservoir Computing
- arxiv url: http://arxiv.org/abs/2405.04799v2
- Date: Tue, 28 Jan 2025 20:32:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-30 15:51:13.898376
- Title: Practical Few-Atom Quantum Reservoir Computing
- Title(参考訳): 量子貯留層計算の実用化
- Authors: Chuanzhou Zhu, Peter J. Ehlers, Hendra I. Nurdin, Daniel Soh,
- Abstract要約: 量子Reservoir Computing (QRC) は、複雑な計算問題に異常な効率とエネルギー使用量の最小化で対処するために量子システムを利用する。
本稿では、光学キャビティ内の2レベル原子をわずかに含む最小限の量子貯水池を利用するQRCフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Quantum Reservoir Computing (QRC) harnesses quantum systems to tackle intricate computational problems with exceptional efficiency and minimized energy usage. This paper presents a QRC framework that utilizes a minimalistic quantum reservoir, consisting of only a few two-level atoms within an optical cavity. The system is inherently scalable, as newly added atoms automatically couple with the existing ones through the shared cavity field. We demonstrate that the quantum reservoir outperforms traditional classical reservoir computing in both memory retention and nonlinear data processing through two tasks, namely the prediction of time-series data using the Mackey-Glass task and the classification of sine-square waveforms. Our results show significant performance improvements with an increasing number of atoms, facilitated by non-destructive, continuous quantum measurements and polynomial regression techniques. These findings confirm the potential of QRC as a practical and efficient solution to addressing complex computational challenges in quantum machine learning.
- Abstract(参考訳): 量子Reservoir Computing (QRC) は、複雑な計算問題に異常な効率とエネルギー使用量の最小化で対処するために量子システムを利用する。
本稿では、光学キャビティ内の2レベル原子をわずかに含む最小限の量子貯水池を利用するQRCフレームワークを提案する。
このシステムは本質的にスケーラブルであり、新たに追加された原子は共有キャビティフィールドを介して既存の原子と自動的に結合する。
量子貯水池は2つのタスク、すなわちマッキーグラスタスクを用いた時系列データの予測と正方形波形の分類において、メモリ保持と非線形データ処理の両方において従来の古典的貯水池計算より優れていることを示す。
その結果,非破壊的連続量子計測法と多項式回帰法により促進される原子数の増加に伴い,大幅な性能向上が得られた。
これらの結果は、量子機械学習における複雑な計算課題に対処するための実用的で効率的なソリューションとして、QRCの可能性を裏付けるものである。
関連論文リスト
- Minimalistic and Scalable Quantum Reservoir Computing Enhanced with Feedback [0.0]
量子Reservoir Computing (QRC) は、量子システムを利用して、例外的な効率とエネルギー消費の削減で複雑な計算タスクを実行する。
単一モード光キャビティ内の2レベル原子を数個だけ利用し,連続量子測定と組み合わせた最小主義QRCフレームワークを提案する。
このフレームワークは、ハードウェアサイズとエネルギー消費を最小限にするため、QRCの目的を満たす。
論文 参考訳(メタデータ) (2024-12-06T23:44:46Z) - Memory-Augmented Hybrid Quantum Reservoir Computing [0.0]
本稿では、量子計測の古典的後処理を通じてメモリを実装するハイブリッド量子古典的アプローチを提案する。
我々は、完全に連結されたIsingモデルとRydberg原子配列の2つの物理プラットフォーム上でモデルをテストした。
論文 参考訳(メタデータ) (2024-09-15T22:44:09Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quadratic speed-ups in quantum kernelized binary classification [1.3812010983144802]
量子カーネルをデータ間の類似性の尺度として使用するいくつかの量子機械学習アルゴリズムが登場し、量子状態として符号化されたデータセットのバイナリ分類を実行するようになった。
本稿では,QKCに対する新しい量子回路を提案し,量子ビットの数を1つ減らし,サンプルデータに対して回路深さを線形に減らした。
Irisデータセットの数値シミュレーションにより,従来の手法よりも2次的な高速化を検証した。
論文 参考訳(メタデータ) (2024-03-26T07:39:48Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
本稿では,分散量子コンピューティング(DQC)のためのリソース割り当て方式を提案する。
本評価は,提案手法の有効性と,量子コンピュータとオンデマンド量子コンピュータの両立性を示すものである。
論文 参考訳(メタデータ) (2022-09-16T02:37:32Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - Reservoir Computing Approach to Quantum State Measurement [0.0]
貯留層計算(Reservoir computing)は、超伝導多ビット系の量子計測における資源効率の高い解である。
このデバイスを動作させて2量子状態トモグラフィーと連続パリティモニタリングを行う方法を示す。
論文 参考訳(メタデータ) (2020-11-19T04:46:15Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
本研究は、D-Wave 2000Q量子アニール上の分子電子ハミルトニアン固有値-固有ベクトル問題を解くために、一般量子アニール固有解法(QAE)アルゴリズムを実装した。
そこで本研究では,D-Waveハードウェアを用いた各種分子系における基底および電子励起状態の取得について述べる。
論文 参考訳(メタデータ) (2020-09-02T22:46:47Z) - Simulating quantum chemistry in the seniority-zero space on qubit-based
quantum computers [0.0]
計算量子化学の近似をゲートベースの量子コンピュータ上で分子化学をシミュレートする手法と組み合わせる。
基本集合を増大させるために解放された量子資源を用いることで、より正確な結果が得られ、必要な数の量子コンピューティングの実行が削減されることが示される。
論文 参考訳(メタデータ) (2020-01-31T19:44:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。