Gödel Number based Clustering Algorithm with Decimal First Degree Cellular Automata
- URL: http://arxiv.org/abs/2405.04881v1
- Date: Wed, 8 May 2024 08:30:34 GMT
- Title: Gödel Number based Clustering Algorithm with Decimal First Degree Cellular Automata
- Authors: Vicky Vikrant, Narodia Parth P, Kamalika Bhattacharjee,
- Abstract summary: In this paper, a decimal first degree cellular automata (FDCA) based clustering algorithm is proposed.
Data objects are encoded into decimal strings using G"odel number based encoding.
In comparison with the existing state-of-the-art clustering algorithms, our proposed algorithm gives better performance.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, a decimal first degree cellular automata (FDCA) based clustering algorithm is proposed where clusters are created based on reachability. Cyclic spaces are created and configurations which are in the same cycle are treated as the same cluster. Here, real-life data objects are encoded into decimal strings using G\"odel number based encoding. The benefits of the scheme is, it reduces the encoded string length while maintaining the features properties. Candidate CA rules are identified based on some theoretical criteria such as self-replication and information flow. An iterative algorithm is developed to generate the desired number of clusters over three stages. The results of the clustering are evaluated based on benchmark clustering metrics such as Silhouette score, Davis Bouldin, Calinski Harabasz and Dunn Index. In comparison with the existing state-of-the-art clustering algorithms, our proposed algorithm gives better performance.
Related papers
- Hierarchical Clustering using Reversible Binary Cellular Automata for High-Dimensional Data [0.0]
In cellular automaton (CA) based clustering, if two objects belong to the same cycle, they are closely related and considered as part of the same cluster.
This paper identifies the relationship between objects in two different cycles based on the median of all elements in each cycle so that they can be grouped in the next stage.
When verified over standard benchmark datasets with various performance metrics, our algorithm is at par with the existing algorithms with quadratic time complexity.
arXiv Detail & Related papers (2024-08-05T05:48:45Z) - ABCDE: Application-Based Cluster Diff Evals [49.1574468325115]
It aims to be practical: it allows items to have associated importance values that are application-specific, it is frugal in its use of human judgements when determining which clustering is better, and it can report metrics for arbitrary slices of items.
The approach to measuring the delta in the clustering quality is novel: instead of trying to construct an expensive ground truth up front and evaluating the each clustering with respect to that, ABCDE samples questions for judgement on the basis of the actual diffs between the clusterings.
arXiv Detail & Related papers (2024-07-31T08:29:35Z) - FLASC: A Flare-Sensitive Clustering Algorithm [0.0]
We present FLASC, an algorithm that detects branches within clusters to identify subpopulations.
Two variants of the algorithm are presented, which trade computational cost for noise robustness.
We show that both variants scale similarly to HDBSCAN* in terms of computational cost and provide stable outputs.
arXiv Detail & Related papers (2023-11-27T14:55:16Z) - Determining the Optimal Number of Clusters for Time Series Datasets with
Symbolic Pattern Forest [0.0]
The problem of calculating the optimal number of clusters (say k) is one of the significant challenges for such methods.
In this work, we extended the Symbolic Pattern Forest algorithm to determine the optimal number of clusters for the time series datasets.
We tested our approach on the UCR archive datasets, and our experimental results so far showed significant improvement over the baseline.
arXiv Detail & Related papers (2023-10-01T23:33:37Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
We devise an efficient algorithm that recovers clusters using the observed labels.
We present Instance-Adaptive Clustering (IAC), the first algorithm whose performance matches these lower bounds both in expectation and with high probability.
arXiv Detail & Related papers (2023-06-18T08:46:06Z) - Swarm Intelligence for Self-Organized Clustering [6.85316573653194]
A swarm system called Databionic swarm (DBS) is introduced which is able to adapt itself to structures of high-dimensional data.
By exploiting the interrelations of swarm intelligence, self-organization and emergence, DBS serves as an alternative approach to the optimization of a global objective function in the task of clustering.
arXiv Detail & Related papers (2021-06-10T06:21:48Z) - Exact and Approximate Hierarchical Clustering Using A* [51.187990314731344]
We introduce a new approach based on A* search for clustering.
We overcome the prohibitively large search space by combining A* with a novel emphtrellis data structure.
We empirically demonstrate that our method achieves substantially higher quality results than baselines for a particle physics use case and other clustering benchmarks.
arXiv Detail & Related papers (2021-04-14T18:15:27Z) - Clustering with Penalty for Joint Occurrence of Objects: Computational
Aspects [0.0]
The method of Hol'y, Sokol and vCern'y clusters objects based on their incidence in a large number of given sets.
The idea is to minimize the occurrence of multiple objects from the same cluster in the same set.
In the current paper, we study computational aspects of the method.
arXiv Detail & Related papers (2021-02-02T10:39:27Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - Optimal Clustering from Noisy Binary Feedback [75.17453757892152]
We study the problem of clustering a set of items from binary user feedback.
We devise an algorithm with a minimal cluster recovery error rate.
For adaptive selection, we develop an algorithm inspired by the derivation of the information-theoretical error lower bounds.
arXiv Detail & Related papers (2019-10-14T09:18:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.