Fast LiDAR Upsampling using Conditional Diffusion Models
- URL: http://arxiv.org/abs/2405.04889v2
- Date: Tue, 23 Jul 2024 06:51:06 GMT
- Title: Fast LiDAR Upsampling using Conditional Diffusion Models
- Authors: Sander Elias Magnussen Helgesen, Kazuto Nakashima, Jim Tørresen, Ryo Kurazume,
- Abstract summary: Existing approaches have shown the possibilities for using diffusion models to generate refined LiDAR data with high fidelity.
We introduce a novel approach based on conditional diffusion models for fast and high-quality sparse-to-dense upsampling of 3D scene point clouds.
Our method employs denoising diffusion probabilistic models trained with conditional inpainting masks, which have been shown to give high performance on image completion tasks.
- Score: 1.3709133749179265
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The search for refining 3D LiDAR data has attracted growing interest motivated by recent techniques such as supervised learning or generative model-based methods. Existing approaches have shown the possibilities for using diffusion models to generate refined LiDAR data with high fidelity, although the performance and speed of such methods have been limited. These limitations make it difficult to execute in real-time, causing the approaches to struggle in real-world tasks such as autonomous navigation and human-robot interaction. In this work, we introduce a novel approach based on conditional diffusion models for fast and high-quality sparse-to-dense upsampling of 3D scene point clouds through an image representation. Our method employs denoising diffusion probabilistic models trained with conditional inpainting masks, which have been shown to give high performance on image completion tasks. We introduce a series of experiments, including multiple datasets, sampling steps, and conditional masks. This paper illustrates that our method outperforms the baselines in sampling speed and quality on upsampling tasks using the KITTI-360 dataset. Furthermore, we illustrate the generalization ability of our approach by simultaneously training on real-world and synthetic datasets, introducing variance in quality and environments.
Related papers
- Gait Sequence Upsampling using Diffusion Models for Single LiDAR Sensors [1.0485739694839664]
LidarGSU is designed to improve the generalization capability of existing identification models.
In this work, we leverage DPMs on sparse sequential pedestrian point clouds as conditional masks in a video-to-video translation approach.
We conduct extensive experiments on the SUSTeck1K dataset to evaluate the generative quality and recognition performance of the proposed method.
arXiv Detail & Related papers (2024-10-11T10:11:21Z) - AdaDiff: Adaptive Step Selection for Fast Diffusion [88.8198344514677]
We introduce AdaDiff, a framework designed to learn instance-specific step usage policies.
AdaDiff is optimized using a policy gradient method to maximize a carefully designed reward function.
Our approach achieves similar results in terms of visual quality compared to the baseline using a fixed 50 denoising steps.
arXiv Detail & Related papers (2023-11-24T11:20:38Z) - LiDAR Data Synthesis with Denoising Diffusion Probabilistic Models [1.1965844936801797]
Generative modeling of 3D LiDAR data is an emerging task with promising applications for autonomous mobile robots.
We present R2DM, a novel generative model for LiDAR data that can generate diverse and high-fidelity 3D scene point clouds.
Our method is built upon denoising diffusion probabilistic models (DDPMs), which have shown impressive results among generative model frameworks.
arXiv Detail & Related papers (2023-09-17T12:26:57Z) - IT3D: Improved Text-to-3D Generation with Explicit View Synthesis [71.68595192524843]
This study presents a novel strategy that leverages explicitly synthesized multi-view images to address these issues.
Our approach involves the utilization of image-to-image pipelines, empowered by LDMs, to generate posed high-quality images.
For the incorporated discriminator, the synthesized multi-view images are considered real data, while the renderings of the optimized 3D models function as fake data.
arXiv Detail & Related papers (2023-08-22T14:39:17Z) - Diffusion with Forward Models: Solving Stochastic Inverse Problems
Without Direct Supervision [76.32860119056964]
We propose a novel class of denoising diffusion probabilistic models that learn to sample from distributions of signals that are never directly observed.
We demonstrate the effectiveness of our method on three challenging computer vision tasks.
arXiv Detail & Related papers (2023-06-20T17:53:00Z) - HiFA: High-fidelity Text-to-3D Generation with Advanced Diffusion
Guidance [19.252300247300145]
This work proposes holistic sampling and smoothing approaches to achieve high-quality text-to-3D generation.
We compute denoising scores in the text-to-image diffusion model's latent and image spaces.
To generate high-quality renderings in a single-stage optimization, we propose regularization for the variance of z-coordinates along NeRF rays.
arXiv Detail & Related papers (2023-05-30T05:56:58Z) - CamoDiffusion: Camouflaged Object Detection via Conditional Diffusion
Models [72.93652777646233]
Camouflaged Object Detection (COD) is a challenging task in computer vision due to the high similarity between camouflaged objects and their surroundings.
We propose a new paradigm that treats COD as a conditional mask-generation task leveraging diffusion models.
Our method, dubbed CamoDiffusion, employs the denoising process of diffusion models to iteratively reduce the noise of the mask.
arXiv Detail & Related papers (2023-05-29T07:49:44Z) - Training on Thin Air: Improve Image Classification with Generated Data [28.96941414724037]
Diffusion Inversion is a simple yet effective method to generate diverse, high-quality training data for image classification.
Our approach captures the original data distribution and ensures data coverage by inverting images to the latent space of Stable Diffusion.
We identify three key components that allow our generated images to successfully supplant the original dataset.
arXiv Detail & Related papers (2023-05-24T16:33:02Z) - Deceptive-NeRF/3DGS: Diffusion-Generated Pseudo-Observations for High-Quality Sparse-View Reconstruction [60.52716381465063]
We introduce Deceptive-NeRF/3DGS to enhance sparse-view reconstruction with only a limited set of input images.
Specifically, we propose a deceptive diffusion model turning noisy images rendered from few-view reconstructions into high-quality pseudo-observations.
Our system progressively incorporates diffusion-generated pseudo-observations into the training image sets, ultimately densifying the sparse input observations by 5 to 10 times.
arXiv Detail & Related papers (2023-05-24T14:00:32Z) - Fast Inference in Denoising Diffusion Models via MMD Finetuning [23.779985842891705]
We present MMD-DDM, a novel method for fast sampling of diffusion models.
Our approach is based on the idea of using the Maximum Mean Discrepancy (MMD) to finetune the learned distribution with a given budget of timesteps.
Our findings show that the proposed method is able to produce high-quality samples in a fraction of the time required by widely-used diffusion models.
arXiv Detail & Related papers (2023-01-19T09:48:07Z) - Gait Recognition in the Wild with Multi-hop Temporal Switch [81.35245014397759]
gait recognition in the wild is a more practical problem that has attracted the attention of the community of multimedia and computer vision.
This paper presents a novel multi-hop temporal switch method to achieve effective temporal modeling of gait patterns in real-world scenes.
arXiv Detail & Related papers (2022-09-01T10:46:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.