Gait Sequence Upsampling using Diffusion Models for Single LiDAR Sensors
- URL: http://arxiv.org/abs/2410.08680v2
- Date: Mon, 14 Oct 2024 09:38:12 GMT
- Title: Gait Sequence Upsampling using Diffusion Models for Single LiDAR Sensors
- Authors: Jeongho Ahn, Kazuto Nakashima, Koki Yoshino, Yumi Iwashita, Ryo Kurazume,
- Abstract summary: LidarGSU is designed to improve the generalization capability of existing identification models.
In this work, we leverage DPMs on sparse sequential pedestrian point clouds as conditional masks in a video-to-video translation approach.
We conduct extensive experiments on the SUSTeck1K dataset to evaluate the generative quality and recognition performance of the proposed method.
- Score: 1.0485739694839664
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, 3D LiDAR has emerged as a promising technique in the field of gait-based person identification, serving as an alternative to traditional RGB cameras, due to its robustness under varying lighting conditions and its ability to capture 3D geometric information. However, long capture distances or the use of low-cost LiDAR sensors often result in sparse human point clouds, leading to a decline in identification performance. To address these challenges, we propose a sparse-to-dense upsampling model for pedestrian point clouds in LiDAR-based gait recognition, named LidarGSU, which is designed to improve the generalization capability of existing identification models. Our method utilizes diffusion probabilistic models (DPMs), which have shown high fidelity in generative tasks such as image completion. In this work, we leverage DPMs on sparse sequential pedestrian point clouds as conditional masks in a video-to-video translation approach, applied in an inpainting manner. We conducted extensive experiments on the SUSTeck1K dataset to evaluate the generative quality and recognition performance of the proposed method. Furthermore, we demonstrate the applicability of our upsampling model using a real-world dataset, captured with a low-resolution sensor across varying measurement distances.
Related papers
- LiDAR-GS:Real-time LiDAR Re-Simulation using Gaussian Splatting [50.808933338389686]
LiDAR simulation plays a crucial role in closed-loop simulation for autonomous driving.
We present LiDAR-GS, the first LiDAR Gaussian Splatting method, for real-time high-fidelity re-simulation of LiDAR sensor scans in public urban road scenes.
Our approach succeeds in simultaneously re-simulating depth, intensity, and ray-drop channels, achieving state-of-the-art results in both rendering frame rate and quality on publically available large scene datasets.
arXiv Detail & Related papers (2024-10-07T15:07:56Z) - SpheriGait: Enriching Spatial Representation via Spherical Projection for LiDAR-based Gait Recognition [7.074933848493885]
Gait recognition utilizing LiDAR 3D point clouds not only directly captures 3D spatial features but also diminishes the impact of lighting conditions.
In this paper, we proposes a method named SpheriGait for extracting and enhancing dynamic features from point clouds for Lidar-based gait recognition.
arXiv Detail & Related papers (2024-09-18T10:52:02Z) - Fast LiDAR Upsampling using Conditional Diffusion Models [1.3709133749179265]
Existing approaches have shown the possibilities for using diffusion models to generate refined LiDAR data with high fidelity.
We introduce a novel approach based on conditional diffusion models for fast and high-quality sparse-to-dense upsampling of 3D scene point clouds.
Our method employs denoising diffusion probabilistic models trained with conditional inpainting masks, which have been shown to give high performance on image completion tasks.
arXiv Detail & Related papers (2024-05-08T08:38:28Z) - VirtualPainting: Addressing Sparsity with Virtual Points and
Distance-Aware Data Augmentation for 3D Object Detection [3.5259183508202976]
We present an innovative approach that involves the generation of virtual LiDAR points using camera images.
We also enhance these virtual points with semantic labels obtained from image-based segmentation networks.
Our approach offers a versatile solution that can be seamlessly integrated into various 3D frameworks and 2D semantic segmentation methods.
arXiv Detail & Related papers (2023-12-26T18:03:05Z) - Semantics-aware LiDAR-Only Pseudo Point Cloud Generation for 3D Object
Detection [0.7234862895932991]
Recent advances introduced pseudo-LiDAR, i.e., synthetic dense point clouds, using additional modalities such as cameras to enhance 3D object detection.
We present a novel LiDAR-only framework that augments raw scans with dense pseudo point clouds by relying on LiDAR sensors and scene semantics.
arXiv Detail & Related papers (2023-09-16T09:18:47Z) - Boosting 3D Object Detection by Simulating Multimodality on Point Clouds [51.87740119160152]
This paper presents a new approach to boost a single-modality (LiDAR) 3D object detector by teaching it to simulate features and responses that follow a multi-modality (LiDAR-image) detector.
The approach needs LiDAR-image data only when training the single-modality detector, and once well-trained, it only needs LiDAR data at inference.
Experimental results on the nuScenes dataset show that our approach outperforms all SOTA LiDAR-only 3D detectors.
arXiv Detail & Related papers (2022-06-30T01:44:30Z) - Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection [58.81316192862618]
Two critical sensors for 3D perception in autonomous driving are the camera and the LiDAR.
fusing these two modalities can significantly boost the performance of 3D perception models.
We benchmark the state-of-the-art fusion methods for the first time.
arXiv Detail & Related papers (2022-05-30T09:35:37Z) - LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object
Detection [96.63947479020631]
In many real-world applications, the LiDAR points used by mass-produced robots and vehicles usually have fewer beams than that in large-scale public datasets.
We propose the LiDAR Distillation to bridge the domain gap induced by different LiDAR beams for 3D object detection.
arXiv Detail & Related papers (2022-03-28T17:59:02Z) - LiDARCap: Long-range Marker-less 3D Human Motion Capture with LiDAR
Point Clouds [58.402752909624716]
Existing motion capture datasets are largely short-range and cannot yet fit the need of long-range applications.
We propose LiDARHuman26M, a new human motion capture dataset captured by LiDAR at a much longer range to overcome this limitation.
Our dataset also includes the ground truth human motions acquired by the IMU system and the synchronous RGB images.
arXiv Detail & Related papers (2022-03-28T12:52:45Z) - MonoDistill: Learning Spatial Features for Monocular 3D Object Detection [80.74622486604886]
We propose a simple and effective scheme to introduce the spatial information from LiDAR signals to the monocular 3D detectors.
We use the resulting data to train a 3D detector with the same architecture as the baseline model.
Experimental results show that the proposed method can significantly boost the performance of the baseline model.
arXiv Detail & Related papers (2022-01-26T09:21:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.