論文の概要: Verified authors shape X/Twitter discursive communities
- arxiv url: http://arxiv.org/abs/2405.04896v1
- Date: Wed, 8 May 2024 09:04:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-09 14:54:31.176248
- Title: Verified authors shape X/Twitter discursive communities
- Title(参考訳): 検証済みの著者がX/Twitterの分散コミュニティを形作る
- Authors: Stefano Guarino, Ayoub Mounim, Guido Caldarelli, Fabio Saracco,
- Abstract要約: X/Twitter上でのイデオロギー/分散コミュニティのコアは,最も情報に富むインタラクションを明らかにすることで,効果的に識別できることを示す。
この分析は、2022年のイタリアにおける主要な政治出来事に関連する3つのX/Twitterデータセットを考慮して行われる。
- 参考スコア(独自算出の注目度): 0.24999074238880484
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Community detection algorithms try to extract a mesoscale structure from the available network data, generally avoiding any explicit assumption regarding the quantity and quality of information conveyed by specific sets of edges. In this paper, we show that the core of ideological/discursive communities on X/Twitter can be effectively identified by uncovering the most informative interactions in an authors-audience bipartite network through a maximum-entropy null model. The analysis is performed considering three X/Twitter datasets related to the main political events of 2022 in Italy, using as benchmarks four state-of-the-art algorithms - three descriptive, one inferential -, and manually annotating nearly 300 verified users based on their political affiliation. In terms of information content, the communities obtained with the entropy-based algorithm are comparable to those obtained with some of the benchmarks. However, such a methodology on the authors-audience bipartite network: uses just a small sample of the available data to identify the central users of each community; returns a neater partition of the user set in just a few, easy to interpret, communities; clusters well-known political figures in a way that better matches the political alliances when compared with the benchmarks. Our results provide an important insight into online debates, highlighting that online interaction networks are mostly shaped by the activity of a small set of users who enjoy public visibility even outside social media.
- Abstract(参考訳): コミュニティ検出アルゴリズムは、利用可能なネットワークデータからメソスケール構造を抽出し、一般に、特定のエッジセットによって伝達される情報の量と品質に関する明確な仮定を避ける。
本稿では,X/Twitter上でのイデオロギー/ディスカレーティブコミュニティのコアは,最大エントロピーヌルモデルを用いて著者・オーディエンス・バイパートイトネットワークにおける最も情報に富む相互作用を明らかにすることで,効果的に識別可能であることを示す。
この分析は、2022年のイタリアにおける主要な政治イベントに関連する3つのX/Twitterデータセットを、最先端の4つのアルゴリズム(3つの記述と1つの推論)のベンチマークとして検討し、政治的関連に基づいて300近い認証ユーザを手動で注釈付けする。
情報内容の面では、エントロピーに基づくアルゴリズムで得られたコミュニティは、いくつかのベンチマークで得られたコミュニティに匹敵するものである。
しかし、著者と聴衆の2部ネットワークに関するこのような方法論は、各コミュニティの中央ユーザーを特定するために利用可能なデータのごくわずかのサンプルを使い、わずか数個の、簡単に解釈できるコミュニティで、ユーザーセットのより適切な分割を返します。
オンライン・インタラクション・ネットワークは、ソーシャルメディアの外部でも公共の視界を享受する少数のユーザーの活動によって形成されていることを強調した上で、オンライン・インタラクション・ネットワークに関する重要な洞察を提供する。
関連論文リスト
- Political Leaning Inference through Plurinational Scenarios [4.899818550820576]
この研究は、スペインにおける3つの多様な地域(バスク州、カタルーニャ州、ガリシア州)に焦点を当て、多党の分類の様々な方法を探究する。
我々は、リツイートから得られた教師なしユーザ表現と、その後の政治的傾き検出に使用される2段階の手法を用いる。
論文 参考訳(メタデータ) (2024-06-12T07:42:12Z) - Detecting Political Opinions in Tweets through Bipartite Graph Analysis:
A Skip Aggregation Graph Convolution Approach [9.350629400940493]
私たちは2020年の米国大統領選挙に集中し、Twitterから大規模なデータセットを作成します。
ツイート中の政治的意見を検出するために,ユーザの投稿行動とリツイート行動に基づいて,ユーザツイートの2部グラフを構築した。
ツイートノードに2階隣人からの情報を集約する新しいスキップアグリゲーション機構を導入する。
論文 参考訳(メタデータ) (2023-04-22T10:38:35Z) - Fairness meets Cross-Domain Learning: a new perspective on Models and
Metrics [80.07271410743806]
クロスドメイン学習(CD)とモデルフェアネスの関係について検討する。
いくつかの人口集団にまたがる顔画像と医療画像のベンチマークと、分類とローカライゼーションタスクについて紹介する。
本研究は,3つの最先端フェアネスアルゴリズムとともに,14のCDアプローチをカバーし,前者が後者に勝ることを示す。
論文 参考訳(メタデータ) (2023-03-25T09:34:05Z) - Panning for gold: Lessons learned from the platform-agnostic automated
detection of political content in textual data [48.7576911714538]
異なるプラットフォーム間で政治的コンテンツを検出するために、これらの技術がどのように使用できるかについて議論する。
辞書,教師付き機械学習,ニューラルネットワークに依存する3つの検出手法のパフォーマンスを比較した。
この結果から,ニューラルネットワークと機械学習に基づくモデルによって達成されるノイズの少ないデータに対して,事前処理がモデル性能に与える影響が限定された。
論文 参考訳(メタデータ) (2022-07-01T15:23:23Z) - Twitter Referral Behaviours on News Consumption with Ensemble Clustering
of Click-Stream Data in Turkish Media [2.9005223064604078]
本研究は,Twitter のレファレンスに追随するニュース消費パターンを識別するために,組織ウェブサイトにおける読者のクリック活動について調査する。
調査は、ログデータをニュースコンテンツとリンクして洞察を深めることで、幅広い視点に展開されている。
論文 参考訳(メタデータ) (2022-02-04T09:57:13Z) - Improved Topic modeling in Twitter through Community Pooling [0.0]
Twitterの投稿は短いが、他のテキストよりも一貫性が低いことが多い。
著者が同じコミュニティに属しているツイートをグループ化する,トピックモデリングのための新しいプール方式を提案する。
その結果、我々のコミュニティポーリング手法は、2つの異種データセットの指標の大部分において、他の手法よりも優れていた。
論文 参考訳(メタデータ) (2021-12-20T17:05:32Z) - Author Clustering and Topic Estimation for Short Texts [69.54017251622211]
同じ文書中の単語間の強い依存をモデル化することにより、遅延ディリクレ割当を拡張できる新しいモデルを提案する。
同時にユーザをクラスタ化し、ホック後のクラスタ推定の必要性を排除しています。
我々の手法は、短文で生じる問題に対する従来のアプローチよりも、-または----------- で機能する。
論文 参考訳(メタデータ) (2021-06-15T20:55:55Z) - A Comprehensive Survey on Community Detection with Deep Learning [93.40332347374712]
コミュニティは、ネットワーク内の他のコミュニティと異なるメンバーの特徴と接続を明らかにする。
この調査は、最先端の手法の様々なカテゴリをカバーする新しい分類法を考案し、提案する。
ディープニューラルネットワーク(Deep Neural Network)は、畳み込みネットワーク(convolutional network)、グラフアテンションネットワーク( graph attention network)、生成的敵ネットワーク(generative adversarial network)、オートエンコーダ(autoencoder)に分けられる。
論文 参考訳(メタデータ) (2021-05-26T14:37:07Z) - CommuNety: A Deep Learning System for the Prediction of Cohesive Social
Communities [14.839117147209603]
画像を用いた結束型ソーシャルネットワーク予測のための深層学習システムCommuNetyを提案する。
提案したディープラーニングモデルは階層型CNNアーキテクチャで構成され,各結合ネットワークに関連する記述的特徴を学習する。
また、画像中の人物の存在を定量化するための新しい顔共起周波数アルゴリズムと、予測されたソーシャルネットワークにおける個人間の関係の強さを分析する新しい写真ランキング手法を提案する。
論文 参考訳(メタデータ) (2020-07-29T11:03:22Z) - Detecting Communities in Heterogeneous Multi-Relational Networks:A
Message Passing based Approach [89.19237792558687]
コミュニティは、ソーシャルネットワーク、生物学的ネットワーク、コンピュータおよび情報ネットワークを含むネットワークの共通の特徴である。
我々は,全同種ネットワークのコミュニティを同時に検出する効率的なメッセージパッシングに基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-04-06T17:36:24Z) - NWPU-Crowd: A Large-Scale Benchmark for Crowd Counting and Localization [101.13851473792334]
我々は,5,109枚の画像からなる大規模集束群集NWPU-Crowdを構築し,合計2,133,375個の点と箱を付加したアノテートヘッドを構築した。
他の実世界のデータセットと比較すると、様々な照明シーンを含み、最大密度範囲 (020,033) を持つ。
本稿では,データ特性について述べるとともに,主要なSOTA(State-of-the-art)手法の性能を評価し,新たなデータに生じる問題を分析する。
論文 参考訳(メタデータ) (2020-01-10T09:26:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。